A193763 Number of signed permutations of length n avoiding (-2, 1) and (2, -1).
1, 2, 6, 22, 94, 462, 2606, 16862, 124782, 1048990, 9921550, 104447550, 1211190638, 15329157278, 210093682254, 3097760346238, 48869022535726, 821007386273118, 14630266558195214, 275575669958063678, 5469996402416702958, 114107289124208861470
Offset: 0
Keywords
Examples
For n = 2, the 6 permutations are (2, 1), (-2, -1), (1, 2), (1, -2), (-1, 2), and (-1, -2). a(3) = 22 = sum of top row terms of M^3 = (11 + 3 + 2 + 6); where 11 = A051296(3).
Crossrefs
Cf. A051296.
Programs
-
Maple
b := proc(n) option remember; if n = 0 then 2 else add(factorial(k)*b(n-k), k=1..n) fi end: a := n -> if n = 0 then return 1 else b(n) end: seq(a(n), n=0..21); # Peter Luschny, Dec 07 2018
Formula
a(0) = 1, and for n > 0, a(n) = n! + Sum_{j=0..n-1} (n-j)! * a(j).
a(n) is the sum of top row terms of M^n, M = an infinite square production matrix as follows:
1, 1, 0, 0, 0, 0,...
2, 0, 2, 0, 0, 0,...
3, 0, 0, 3, 0, 0,...
4, 0, 0, 0, 4, 0,...
5, 0, 0, 0, 0, 5,...
... The upper left term of M^n = A051296(n). - Gary W. Adamson, Sep 26 2011
Extensions
More terms from Joerg Arndt, Aug 16 2011
Comments