Andy Hardt has authored 7 sequences.
A218090
Number of unlabeled point-determining bipartite graphs on n vertices.
Original entry on oeis.org
1, 1, 1, 1, 2, 3, 8, 17, 63, 224, 1248, 8218, 75992, 906635, 14447433, 303100595, 8415834690, 309390830222, 15105805368214, 982300491033887
Offset: 0
Consider n = 3. The triangle graph is point-determining, but it is not bipartite, so it is not counted in a(3). The graph *--*--* is bipartite, but it is not point-determining (the vertices on the two ends have the same neighborhood), so it is also not counted in a(3). The only graph counted in a(3) is the graph *--* *. - _Justin M. Troyka_, Nov 27 2013
Cf.
A006024,
A004110 (labeled and unlabeled point-determining graphs).
Cf.
A092430,
A004108 (labeled and unlabeled connected point-determining graphs).
Cf.
A232699 (labeled point-determining bipartite graphs).
Cf.
A232700,
A088974 (labeled and unlabeled connected point-determining bipartite graphs).
A193777
Number of signed permutations of size 2n invariant under D and D'bar and avoiding (-2, 1) and (2, -1).
Original entry on oeis.org
1, 2, 6, 18, 58, 190, 642, 2206, 7746, 27662, 100738, 373550, 1413506, 5457710, 21546466, 87025806, 360264258, 1529624366, 6669850466, 29877013902, 137560725890, 650780790894, 3162711095074, 15774862353614, 80687636530882, 422713072650286, 2265833731786594
Offset: 0
-
inv := proc(n) option remember; if n<2 then 1 else inv(n-1)+(n-1)*inv(n-2) fi end:
a := proc(n) option remember; if n < 2 then n+1 else
2*a(n-1) + n*a(n-2) - add(j*a(j)*inv(n-j-2), j=1..n-3) fi end:
seq(a(n), n=0..26); # Peter Luschny, Dec 09 2018
-
inv[n_] := inv[n] = If[n<2, 1, inv[n-1] + (n-1) inv[n-2]];
a[n_] := a[n] = If[n<2, n+1, 2 a[n-1] + n a[n-2] - Sum[j a[j] inv[n-j-2], {j, 1, n-3}]];
Table[a[n], {n, 0, 26}] (* Jean-François Alcover, Jun 26 2019, after Peter Luschny *)
A193778
Number of signed permutations of length 2n invariant under D and D'bar.
Original entry on oeis.org
1, 2, 8, 32, 160, 832, 4864, 29696, 195584, 1341440, 9723904, 73105408, 574062592, 4657184768, 39165624320, 339133595648, 3028204650496, 27760959422464, 261439835078656, 2521668748574720, 24912764963127296, 251559029812232192, 2595790316527157248
Offset: 0
For n = 1, the permutations of length 2 are (-1, 2) and (1, -2).
-
exp(2*x*(x + 1)): series(%, x, 23):
seq(n!*coeff(%, x, n), n = 0..22); # Peter Luschny, May 30 2021
-
RecurrenceTable[{a[0]==1,a[1]==2,a[n]==2a[n-1]+4(n-1)a[n-2]},a,{n,30}] (* Harvey P. Dale, Mar 14 2021 *)
a[n_] := 2^n HypergeometricPFQ[{-n/2, (1-n)/2}, {}, 2];
Table[a[n], {n, 0, 22}] (* Peter Luschny, May 30 2021 *)
-
seq(n)={my(v=vector(n+1)); v[1]=1; v[2]=2; for(n=2, n, v[n+1] = 2*v[n] + 4*(n-1)*v[n-1]); v} \\ Andrew Howroyd, Dec 08 2018
A193776
Number of signed permutations of length n invariant under the reverse complement and avoiding (-2, -1), (-2, 1), (2, -1).
Original entry on oeis.org
1, 2, 3, 5, 12, 17, 65, 80, 473, 527, 4444, 4679, 51391, 52628, 703659, 711449, 11098896, 11156477, 197809793, 198299024, 3927270089, 3931960343, 85908742132, 85958728847, 2052375195679, 2052960568556, 53160174898371, 53167638586121, 1483752628890840, 1483855482962885, 44391655829672177
Offset: 0
For n = 2, the permutations are (1, 2), (2, 1), (-1, -2), (-2, -1).
-
a[n_] := a[n] = If[EvenQ[n],
Sum[a[2j]*(n/2 - j - 1)!, {j, 0, n/2 - 1}] + 2^(n/2)*(n/2)!,
Sum[a[2j+1]*((1/2)*(n - 2j - 3))!, {j, 0, (n - 3)/2}] +
(2^((n - 1)/2) + 1)*((n - 1)/2)!];
Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Apr 10 2024 *)
A193775
Number of signed permutations invariant under the reverse complement and avoiding (-2, -1), (-1, 2), and (1, -2).
Original entry on oeis.org
1, 2, 3, 4, 10, 12, 52, 58, 394, 418
Offset: 0
For n = 3, the permutations are (1, 2, 3), (3, 2, 1), (-1, -2, -3), and (-3, 2, -1).
A193774
Number of signed permutations of length n invariant under the reverse complement and avoiding (-2, 1) and (2, -1).
Original entry on oeis.org
1, 2, 4, 6, 20, 26, 124, 146, 956, 1050, 9100
Offset: 0
For n = 2, the permutations are (1, 2), (2, 1), (-1, -2), and (-2, -1).
A193763
Number of signed permutations of length n avoiding (-2, 1) and (2, -1).
Original entry on oeis.org
1, 2, 6, 22, 94, 462, 2606, 16862, 124782, 1048990, 9921550, 104447550, 1211190638, 15329157278, 210093682254, 3097760346238, 48869022535726, 821007386273118, 14630266558195214, 275575669958063678, 5469996402416702958, 114107289124208861470
Offset: 0
For n = 2, the 6 permutations are (2, 1), (-2, -1), (1, 2), (1, -2), (-1, 2), and (-1, -2).
a(3) = 22 = sum of top row terms of M^3 = (11 + 3 + 2 + 6); where 11 = A051296(3).
-
b := proc(n) option remember; if n = 0 then 2 else
add(factorial(k)*b(n-k), k=1..n) fi end:
a := n -> if n = 0 then return 1 else b(n) end:
seq(a(n), n=0..21); # Peter Luschny, Dec 07 2018
Comments