cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A193820 Triangular array: the fusion of polynomial sequences P and Q given by p(n,x)=(x+1)^n and q(n,x)=x^n+x^(n-1)+...+x+1.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 3, 4, 4, 1, 4, 7, 8, 8, 1, 5, 11, 15, 16, 16, 1, 6, 16, 26, 31, 32, 32, 1, 7, 22, 42, 57, 63, 64, 64, 1, 8, 29, 64, 99, 120, 127, 128, 128, 1, 9, 37, 93, 163, 219, 247, 255, 256, 256, 1, 10, 46, 130, 256, 382, 466, 502, 511, 512, 512, 1, 11, 56
Offset: 0

Views

Author

Clark Kimberling, Aug 06 2011

Keywords

Comments

See A193722 for the definition of fusion of two sequences of polynomials or triangular arrays.
Variant of A054143 and A008949. - R. J. Mathar, Mar 03 2013

Examples

			First six rows:
  1
  1....1
  1....2....2
  1....3....4....4
  1....4....7....8....8
  1....5....11...15...16...16
		

Crossrefs

Programs

  • Maple
    A193820 := (n,k) -> `if`(k=0 or n=0,1, A193820(n-1,k-1)+A193820(n-1,k));
    seq(print(seq(A193820(n,k),k=0..n+1)),n=0..10); # Peter Luschny, Jan 22 2012
  • Mathematica
    z = 10; a = 1; b = 1;
    p[n_, x_] := (a*x + b)^n
    q[0, x_] := 1
    q[n_, x_] := x*q[n - 1, x] + 1; q[n_, 0] := q[n, x] /. x -> 0;
    t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0;
    w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1
    g[n_] := CoefficientList[w[n, x], {x}]
    TableForm[Table[Reverse[g[n]], {n, -1, z}]]
    Flatten[Table[Reverse[g[n]], {n, -1, z}]]   (* A193820 *)
    TableForm[Table[g[n], {n, -1, z}]]
    Flatten[Table[g[n], {n, -1, z}]]  (* A128175 *)

Formula

From Peter Bala, Jul 16 2013: (Start)
T(n,k) = sum {i = 0..k} binomial(n-1,k-i) for 0 <= k <= n.
O.g.f.: (1 - x*t)^2/( (1 - 2*x*t)*(1 - (1 + x)*t) ) = 1 + (1 + x)*t + (1 + 2*x + 2*x^2)*t^2 + ....
The n-th row polynomial R(n,x) for n >= 1 is given by R(n,x) = 1/(1 - x)*( (x + 1)^(n-1) - 2^(n-1)*x^(n+1) ). Cf. A193823. (End)