cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A193858 Triangular array: the fission of ((x+1)^n) by ((2x+1)^n).

Original entry on oeis.org

1, 2, 3, 4, 10, 7, 8, 28, 34, 15, 16, 72, 124, 98, 31, 32, 176, 392, 444, 258, 63, 64, 416, 1136, 1672, 1404, 642, 127, 128, 960, 3104, 5616, 6152, 4092, 1538, 255, 256, 2176, 8128, 17440, 23536, 20488, 11260, 3586, 511, 512, 4864, 20608, 51136, 81952
Offset: 0

Views

Author

Clark Kimberling, Aug 07 2011

Keywords

Comments

See A193842 for the definition of fission of two sequences of polynomials or triangular arrays.

Examples

			First six rows:
   1
   2     3
   4    10     7
   8    28    34    15
  16    72   124    98    31
  32   176   392   444   258   63
		

Crossrefs

Programs

  • Maple
    # The function 'fission' is defined in A193842.
    A193858_row := n -> fission((n,x) -> (x+1)^n, (n,x) -> (2*x+1)^n, n);
    for n from 0 to 5 do A193858_row(n) od; # Peter Luschny, Jul 23 2014
  • Mathematica
    z = 10;
    p[n_, x_] := (x + 1)^n;
    q[n_, x_] := (2 x + 1)^n;
    p1[n_, k_] := Coefficient[p[n, x], x^k];
    p1[n_, 0] := p[n, x] /. x -> 0;
    d[n_, x_] := Sum[p1[n, k]*q[n - 1 - k, x], {k, 0, n - 1}]
    h[n_] := CoefficientList[d[n, x], {x}]
    TableForm[Table[Reverse[h[n]], {n, 0, z}]]
    Flatten[Table[Reverse[h[n]], {n, -1, z}]]  (* this sequence *)
    TableForm[Table[h[n], {n, 0, z}]]
    Flatten[Table[h[n], {n, -1, z}]]   (* A193859 *)
  • PARI
    T(n,k)={sum(j=0, k, 2^(n-j) * binomial(n-j, k-j))} \\ Andrew Howroyd, Feb 18 2024
  • Sage
    # uses[fission from A193842]
    A193858_row = lambda k: fission(lambda n,x: (x+1)^n, lambda n,x: (2*x+1)^n, k)
    for n in range(7): A193858_row(n) # Peter Luschny, Jul 23 2014
    

Formula

From Andrew Howroyd, Feb 18 2024: (Start)
T(n,k) = Sum_{j=0..k} 2^(n-j) * binomial(n-j,k-j).
G.f.: A(x,y) = 1/(1 - (2 + 3*y)*x + 2*y*(1 + y)*x^2). (End)