A193863 Expansion of Product_{n>=0} (1 + q*(-q^2)^n) / (1 - q*(-q^2)^n).
1, 2, 2, 0, -2, 0, 4, 4, -2, -6, 0, 8, 4, -8, -8, 8, 14, -4, -18, 0, 24, 8, -28, -20, 28, 34, -24, -48, 16, 64, 0, -76, -18, 88, 44, -96, -78, 96, 116, -88, -160, 68, 208, -32, -252, -16, 296, 84, -332, -170, 354, 272, -360, -392, 344, 528, -296, -672, 216, 824, -96, -976, -72, 1116, 286, -1240, -552, 1336, 876, -1384
Offset: 0
Keywords
Examples
1 + 2*x + 2*x^2 - 2*x^4 + 4*x^6 + 4*x^7 - 2*x^8 - 6*x^9 + 8*x^11 + ...
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..1000
- J. Arndt, Regularized q-exponential and q-trigonometric series of the first kind
Crossrefs
Programs
-
PARI
N=66; q='q+O('q^N); /* that many terms */ gf = prod(n=0, N, (1+q*(-q^2)^n)/(1-q*(-q^2)^n) ); Vec(gf) /* show terms */ /* Alternative computation of the g.f. using a product form */ V=[0,-2, 1, 2, 0, -2, -1, 2]; /* note vectors are one-based */ gf=prod(n=0, N, (1-q^n)^(V[n%8+1]) );
-
PARI
{a(n) = local(A); if( n<0, 0, polcoeff( prod( k=1, n, (1 - x^k + x * O(x^n) )^[ 0, -2, 1, 2, 0, -2, -1, 2][k%8 + 1]), n))} /* Michael Somos, Feb 26 2012 */
Formula
Euler transform of period 8 sequence [ 2, -1, -2, 0, 2, 1, -2, 0, ...]. - Michael Somos, Feb 26 2012
G.f.: prod(n>=0, (1+q*(-q^2)^n)/(1-q*(-q^2)^n) ).
G.f.: sum(n>=0, prod(k=0..n-1, 1+(-q^2)^k )/prod(k=1..n, 1-(-q^2)^k ) * q^n ).
G.f.: sum(n>=0, prod(k=0..n-1, 1+(-q^2)^k)/( prod(k=1..n, 1-(-q^2)^k) * prod(k=0..n-1, 1-q*(-q^2)^k ) ) * q^n * (-q^2)^(n*(n-1)/2) ).
Comments