cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A193866 Even pentagonal numbers divided by 2.

Original entry on oeis.org

0, 6, 11, 35, 46, 88, 105, 165, 188, 266, 295, 391, 426, 540, 581, 713, 760, 910, 963, 1131, 1190, 1376, 1441, 1645, 1716, 1938, 2015, 2255, 2338, 2596, 2685, 2961, 3056, 3350, 3451, 3763, 3870, 4200, 4313, 4661, 4780, 5146, 5271, 5655, 5786, 6188
Offset: 0

Views

Author

Omar E. Pol, Aug 18 2011

Keywords

Crossrefs

Programs

  • Magma
    [1/16*(1-3*(-1)^n+12*n)*(1-(-1)^n+4*n): n in [0..60]]; // Vincenzo Librandi, Jun 20 2015
  • Mathematica
    Table[(1/16 (1 - 3 (-1)^n + 12 n) (1 - (-1)^n + 4 n)), {n, 0, 50}] (* Vincenzo Librandi, Jun 20 2015 *)
    Select[PolygonalNumber[5,Range[0,100]],EvenQ]/2 (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Sep 13 2018 *)
  • PARI
    a(n)=3*n^2+if(n%2,5*n+1,-n)/2 \\ Charles R Greathouse IV, Aug 18 2011
    

Formula

a(n) = 1/16*(1-3*(-1)^n+12*n)*(1-(-1)^n+4*n).
a(n) = A014633(n)/2.
a(0)=0, a(1)=6, a(2)=11, a(3)=35, a(4)=46, a(n)=a(n-1)+2*a(n-2)-2*a(n-3)-a(n-4)+a(n-5). G.f.: x*(6+5*x+12*x^2+x^3)/(1-x-2*x^2+2*x^3+x^4-x^5). [Colin Barker, Jan 25 2012]