cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A193868 Even central polygonal numbers.

Original entry on oeis.org

2, 4, 16, 22, 46, 56, 92, 106, 154, 172, 232, 254, 326, 352, 436, 466, 562, 596, 704, 742, 862, 904, 1036, 1082, 1226, 1276, 1432, 1486, 1654, 1712, 1892, 1954, 2146, 2212, 2416, 2486, 2702, 2776, 3004, 3082, 3322, 3404, 3656, 3742, 4006, 4096, 4372
Offset: 1

Views

Author

Omar E. Pol, Aug 15 2011

Keywords

Comments

Odd triangular numbers plus 1.

Crossrefs

Programs

  • Magma
    [1+((2*n-1)*(2*n-1-(-1)^n)/2): n in [1..50]]; // Vincenzo Librandi, Aug 18 2011
    
  • Mathematica
    Table[(3 + (-1)^n - 2 (2 + (-1)^n) n + 4 n^2)/2, {n, 50}] (* or *)
    Select[PolygonalNumber@ Range@ 100, OddQ] + 1 (* Version 10.4, or *)
    Table[If[EvenQ@ n, 2 n^2 - 3 n + 2, 2 n^2 - n + 1], {n, 50}] (* or *)
    Rest@ CoefficientList[Series[-2 x (1 + x + 4 x^2 + x^3 + x^4)/((1 + x)^2 (x - 1)^3), {x, 0, 50}], x] (* Michael De Vlieger, Jun 30 2016 *)
    LinearRecurrence[{1,2,-2,-1,1},{2,4,16,22,46},50] (* Harvey P. Dale, Sep 13 2020 *)
  • PARI
    a(n)=(2*n-1)*(2*n-1-(-1)^n)/2+1 \\ Charles R Greathouse IV, Jun 11 2015
    
  • PARI
    Vec(2*x*(1+x+4*x^2+x^3+x^4)/((1-x)^3*(1+x)^2) + O(x^100)) \\ Colin Barker, Jan 27 2016

Formula

a(n) = A000124(A042963(n-1)).
a(n) = 1 + A014493(n).
a(n) = 2*A174114(n).
G.f.: -2*x*(1+x+4*x^2+x^3+x^4) / ( (1+x)^2*(x-1)^3 ). - R. J. Mathar, Aug 25 2011
From Colin Barker, Jan 27 2016: (Start)
a(n) = (3+(-1)^n-2*(2+(-1)^n)*n+4*n^2)/2.
a(n) = 2*n^2-3*n+2 for n even.
a(n) = 2*n^2-n+1 for n odd. (End)
Sum_{n>=1} 1/a(n) = 2*Pi*sinh(sqrt(7)*Pi/4)/(sqrt(7)*(sqrt(2) + 2*cosh(sqrt(7)*Pi/4))). - Amiram Eldar, May 11 2025