A094585 Triangle T of all positive differences of distinct Fibonacci numbers; also, triangle of all sums of consecutive distinct Fibonacci numbers.
1, 2, 3, 3, 5, 6, 5, 8, 10, 11, 8, 13, 16, 18, 19, 13, 21, 26, 29, 31, 32, 21, 34, 42, 47, 50, 52, 53, 34, 55, 68, 76, 81, 84, 86, 87, 55, 89, 110, 123, 131, 136, 139, 141, 142, 89, 144, 178, 199, 212, 220, 225, 228, 230, 231, 144, 233, 288, 322, 343, 356, 364, 369, 372, 374, 375
Offset: 1
Examples
Rows 1 to 5: 1; 2, 3; 3, 5, 6; 5, 8, 10, 11; 8, 13, 16, 18, 19; T(5,4) = F(8) - F(4) = 21 - 3 = 18; T(5,4) = F(6) + F(5) + F(4) + F(3) = 8 + 5 + 3 + 2 = 18.
Links
- Muniru A Asiru, Rows n=1..150 of triangle, flattened
Programs
-
GAP
Flat(List([1..11],n->List([1..n],k->Fibonacci(n+3)-Fibonacci(n-k+3)))); # Muniru A Asiru, Apr 28 2019
-
Mathematica
(* See A193999. *) Table[Fibonacci[n+3]-Fibonacci[n+3-k],{n,1,20}, {k,1,n}]//TableForm (* Rigoberto Florez, Oct 03 2019 *)
Formula
T(n, k) = F(n+3) - F(n+3-k) = F(n+1) + F(n) + ... + F(n+2-k), for k=1..n; n >= 1.
G.f.: x*y*(x*y+x+1)/((1-y*x)*(x^2+x-1)*(x^2*y^2+x*y-1)). - Vladimir Kruchinin, Jun 20 2025
Comments