A194025 Number of fixed points under iteration of sum of cubes of digits in base b.
1, 2, 9, 3, 4, 7, 6, 8, 5, 8, 5, 5, 3, 3, 24, 3, 2, 9, 2, 3, 16, 5, 2, 20, 2, 2, 7, 9, 3, 14, 2, 6, 8, 4, 10, 12, 2, 8, 8, 7, 2, 12, 4, 5, 17, 5, 4, 27, 6, 5, 10, 4, 2, 11, 9, 5, 9, 6, 3, 25, 5, 6, 24, 5, 4, 17, 5, 5, 9, 10, 1, 15, 4, 3, 13, 3, 5, 19, 4, 13, 7
Offset: 2
Examples
In the decimal system all integers go to (1); (153); (370); (371); (407) or (55, 250,133); (136, 244); (160, 217, 352); (919, 1459) under the iteration of sum of cubes of digits, hence there are five fixed points, two 2-cycles and two 3-cycles. Therefore a(10) = 5.
Links
- Christian N. K. Anderson, Table of n, a(n) for n = 2..1000
- Christian N. K. Anderson, Histogram of a(n)
- H. G. Grundman and E. A. Teeple, Generalized Happy Numbers, Fibonacci Quarterly 39 (2001), nr. 5, p. 462-466.
Crossrefs
Programs
-
Maple
S:=proc(n,p,b) local Q,k,N,z; Q:=[n]; for k from 1 do N:=Q[k]; z:=convert(sum(N['i']^p,'i'=1..nops(N)),base,b); if not member(z,Q) then Q:=[op(Q),z]; else Q:=[op(Q),z]; break; fi; od; return Q; end: a:=proc(b) local F,i,A,Q,B,C; A:=[]: for i from 1 to 2*b^3 do Q:=S(convert(i,base,b),3,b); A:={op(A),Q[nops(Q)]}; od: F:={}: for i from 1 while nops(A)>0 do B:=S(A[1],3,b); C:=[seq(B[i],i=1..nops(B)-1)]: if nops(C)=1 then F:={op(F),op(C)}: fi: A:=A minus {op(B)}; od: return(nops(F)); end: # Martin Renner, Aug 24 2011
-
R
#See A226026 for an optimized version inbase=function(n, b) { x=c(); while(n>=b) { x=c(n%%b, x); n=floor(n/b) }; c(n, x) }; yn=rep(NA, 30) for(b in 2:30) yn[b]=sum(sapply(1:(2*b^3), function(x) sum(inbase(x, b)^3))==1:(2*b^3)); yn # Christian N. K. Anderson, Jun 08 2013
-
Sage
def A194025(n): # inefficient but straightforward return len([i for i in (1..2*n**3) if i==sum(d**3 for d in i.digits(base=n))]) # D. S. McNeil, Aug 23 2011
Comments