A194195 First inverse function (numbers of rows) for pairing function A060734.
1, 2, 2, 1, 3, 3, 3, 2, 1, 4, 4, 4, 4, 3, 2, 1, 5, 5, 5, 5, 5, 4, 3, 2, 1, 6, 6, 6, 6, 6, 6, 5, 4, 3, 2, 1, 7, 7, 7, 7, 7, 7, 7, 6, 5, 4, 3, 2, 1, 8, 8, 8, 8, 8, 8, 8, 8, 7, 6, 5, 4, 3, 2, 1, 9, 9, 9, 9, 9, 9, 9, 9, 9
Offset: 1
Examples
The start of the sequence as triangle array read by rows: 1; 2,2,1; 3,3,3,2,1; 4,4,4,4,3,2,1; . . . Row number k contains 2k-1 numbers k,k,...k,k-1,k-2,...1 (k times repetition "k").
Links
- Boris Putievskiy, Rows n = 1..140 of triangle, flattened
- Boris Putievskiy, Transformations Integer Sequences And Pairing Functions arXiv:1212.2732 [math.CO], 2012.
Programs
-
Mathematica
f[n_]:=Module[{t=Floor[Sqrt[n-1]]+1},Min[t,t^2-n+1]]; Array[f,80] (* Harvey P. Dale, Dec 31 2012 *)
-
Python
t=int(math.sqrt(n-1)) +1 i=min(t,t**2-n+1)
Formula
a(n) = min{t; t^2 - n + 1}, where t=floor(sqrt(n-1))+1.
Comments