A194221 Partial sums of A194220.
0, 0, 1, 2, 3, 5, 8, 11, 14, 17, 21, 25, 29, 34, 40, 46, 52, 58, 65, 72, 79, 87, 96, 105, 114, 123, 133, 143, 153, 164, 176, 188, 200, 212, 225, 238, 251, 265, 280, 295, 310, 325, 341, 357, 373, 390, 408, 426, 444, 462, 481, 500, 519, 539, 560, 581, 602
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (2, -1, 0, 0, 0, 0, 0, 1, -2, 1).
Crossrefs
Cf. A194220.
Programs
-
Maple
seq(coeff(series( x^3*(1+x^3+x^4)/((1-x)^2*(1-x^8)) , x, n+1), x, n), n = 1..60); # G. C. Greubel, Jun 10 2020
-
Mathematica
r = 1/4; a[n_] := Floor[Sum[FractionalPart[k*r], {k, 1, n}]] Table[a[n], {n, 1, 90}] (* A194220 *) s[n_] := Sum[a[k], {k, 1, n}] Table[s[n], {n, 1, 100}] (* A194221 *)
Formula
From Chai Wah Wu, Jun 10 2020: (Start)
a(n) = 2*a(n-1) - a(n-2) + a(n-8) - 2*a(n-9) + a(n-10) for n > 10.
G.f.: x^3*(1 + x^3 + x^4)/((1 - x)^3*(1 + x)*(1 + x^2)*(1 + x^4)). (End)
Comments