A194259 Number of distinct prime factors of p(1)*p(2)*...*p(n), where p(n) is the n-th partition number.
0, 1, 2, 3, 4, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 7, 7, 8, 9, 9, 10, 11, 12, 13, 14, 15, 16, 17, 17, 18, 19, 20, 21, 21, 21, 22, 23, 24, 25, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37, 39, 40, 42, 43, 44, 45, 47, 48, 49, 51, 52, 53, 54, 56, 57, 59, 60, 61
Offset: 1
Keywords
Examples
p(1)*p(2)*...*p(8) = 1*2*3*5*7*11*15*22 = 2^2 * 3^2 * 5^2 * 7 * 11^2, so a(8) = 5.
Links
- Alois P. Heinz and Giovanni Resta, Table of n, a(n) for n = 1..10000 (first 2000 terms from Alois P. Heinz)
- J. Cilleruelo and F. Luca, On the largest prime factor of the partition function of n
- A. Schinzel and E. Wirsing, Multiplicative properties of the partition function, Proc. Indian Acad. Sci., Math. Sci. (Ramanujan Birth Centenary Volume), 97 (1987), 297-303; alternative link.
- Eric Weisstein's World of Mathematics, Partition Function
- Wikipedia, Partition function
Programs
-
Maple
with(combinat): with(numtheory): b:= proc(n) option remember; `if`(n=1, {}, b(n-1) union factorset(numbpart(n))) end: a:= n-> nops(b(n)): seq(a(n), n=1..100); # Alois P. Heinz, Aug 20 2011
-
Mathematica
a[n_] := Product[PartitionsP[k], {k, 1, n}] // PrimeNu; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Jan 28 2014 *) PrimeNu[FoldList[Times,PartitionsP[Range[80]]]] (* Harvey P. Dale, May 29 2025 *)
-
PARI
a(n)=my(v=[]);for(k=2,n,v=concat(v,factor(numbpart(k))[,1])); #vecsort(v,,8) \\ Charles R Greathouse IV, Feb 01 2013
Comments