cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A194348 Decimal expansion of sqrt(2)^sqrt(2)^sqrt(2).

Original entry on oeis.org

1, 7, 6, 0, 8, 3, 9, 5, 5, 5, 8, 8, 0, 0, 2, 8, 0, 9, 0, 7, 5, 6, 6, 4, 9, 8, 9, 5, 6, 3, 8, 3, 7, 2, 7, 4, 8, 0, 7, 9, 8, 0, 4, 0, 9, 4, 3, 1, 8, 5, 0, 9, 9, 0, 4, 6, 4, 6, 3, 8, 8, 2, 2, 5, 0, 5, 3, 4, 2, 8, 4, 1, 6, 8, 7, 5, 4, 5, 4, 6, 5, 8, 1, 1, 9, 0, 4, 6, 3, 5, 1, 1, 5, 2, 6, 3, 0, 5, 9, 8, 4
Offset: 1

Views

Author

Jonathan Sondow, Aug 28 2011

Keywords

Comments

If Schanuel's Conjecture is true, then sqrt(2)^sqrt(2)^sqrt(2) is transcendental (see Marques and Sondow 2010, p. 79).

Examples

			1.76083955588002809075664989563837274807980409431850990464638822505342...
		

Crossrefs

Cf. A002193 (decimal expansion of sqrt(2)), A078333 (decimal expansion of sqrt(2)^sqrt(2)), A194555 (the decimal expansion of the real part of I^e^Pi).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); Sqrt(2)^Sqrt(2)^Sqrt(2); // G. C. Greubel, Aug 19 2018
  • Mathematica
    RealDigits[ Sqrt[2]^Sqrt[2]^Sqrt[2], 10, 100] // First
  • PARI
    sqrt(2)^sqrt(2)^sqrt(2) \\ Charles R Greathouse IV, May 14 2014
    
  • PARI
    (x->x^x^x)(sqrt(2)) \\ Charles R Greathouse IV, May 14 2014