cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A194349 E.g.f.: -log( sqrt(1-x^2) - x ).

Original entry on oeis.org

1, 2, 5, 24, 129, 960, 7965, 80640, 903105, 11612160, 163451925, 2554675200, 43259364225, 797058662400, 15764670046125, 334764638208000, 7571150452490625, 182111963185152000, 4634731528895593125, 124564582818643968000
Offset: 1

Views

Author

Paul D. Hanna, Aug 21 2011

Keywords

Comments

Compare e.g.f. to arccosh(x) = log(sqrt(x^2-1) + x).

Examples

			E.g.f.: A(x) = x + 2*x^2/2! + 5*x^3/3! + 24*x^4/4! + 129*x^5/5! + ...
where
exp(A(x)) = 1 + 2*(x/2) + 6*(x/2)^2 + 16*(x/2)^3 + 46*(x/2)^4 + 128*(x/2)^5 + ... + A098617(n)*(x/2)^n + ...
		

Crossrefs

Programs

  • Mathematica
    With[{nn=30},Rest[CoefficientList[Series[-Log[Sqrt[1-x^2]-x],{x,0,nn}], x] Range[0,nn]!]] (* Harvey P. Dale, Dec 01 2011 *)
  • PARI
    {a(n)=n!*polcoeff(-log(sqrt(1-x^2+x*O(x^n))-x),n)}
    
  • PARI
    {A000129(n)=polcoeff(x/(1-2*x-x^2+x*O(x^n)),n)}
    {a(n)=if(n<1,0,sum(k=0,floor((n+1)/2),binomial(n+1, k)*A000129(n+1-2*k))*(n-1)!/2^n)}

Formula

a(2*n) = 2^n*(2*n-1)! for n>=1.
a(n) = A100097(n+1)*(n-1)!/2^n for n>=1.
a(n) = (n-1)!/2^n * Sum_{k=0..floor((n+1)/2)} C(n+1,k)*A000129(n+1-2*k) for n >= 1. [From a formula of Paul Barry in A100097]
E.g.f.: log( (sqrt(1-x^2) + x)/(1-2*x^2) ).