cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A194475 Number of ways to arrange 3 indistinguishable points on an n X n X n triangular grid so that no three points are in the same row or diagonal.

Original entry on oeis.org

0, 1, 17, 105, 410, 1225, 3066, 6762, 13560, 25245, 44275, 73931, 118482, 183365, 275380, 402900, 576096, 807177, 1110645, 1503565, 2005850, 2640561, 3434222, 4417150, 5623800, 7093125, 8868951, 11000367, 13542130, 16555085, 20106600
Offset: 1

Views

Author

R. H. Hardin, Aug 26 2011

Keywords

Comments

Column 3 of A194480.

Examples

			The 17 solutions for 3 X 3 X 3:
.
    1         1         1         1         1         1
   1 1       1 0       1 0       0 1       0 1       0 0
  0 0 0     0 1 0     0 0 1     1 0 0     0 1 0     1 1 0
         1         1         0         0         0
        0 0       0 0       1 1       1 1       1 1
       1 0 1     0 1 1     1 0 0     0 1 0     0 0 1
    0         0         0         0         0         0
   1 0       1 0       1 0       0 1       0 1       0 1
  1 1 0     1 0 1     0 1 1     1 1 0     1 0 1     0 1 1
[edited by _Jon E. Schoenfield_, May 05 2018]
		

Crossrefs

Cf. A194480.

Formula

Empirical: a(n) = (1/48)*n^6 + (1/16)*n^5 - (3/16)*n^4 + (1/48)*n^3 + (1/6)*n^2 - (1/12)*n.
Empirical g.f.: x^2*(1 + 10*x + 7*x^2 - 3*x^3) / (1 - x)^7. - Colin Barker, May 05 2018

A194476 Number of ways to arrange 4 indistinguishable points on an n X n X n triangular grid so that no three points are in the same row or diagonal.

Original entry on oeis.org

0, 0, 6, 114, 879, 4284, 15729, 47565, 124803, 293733, 634293, 1277133, 2426424, 4389567, 7615062, 12739902, 20647962, 32540958, 50023656, 75205116, 110817861, 160356966, 228241167, 319998195, 442476645, 604086795, 815072895, 1087819551
Offset: 1

Views

Author

R. H. Hardin, Aug 26 2011

Keywords

Comments

Column 4 of A194480.

Examples

			All solutions for 3 X 3 X 3:
....0......1......0......1......1......0
...1.1....0.1....1.1....1.1....1.0....1.1
..0.1.1..1.1.0..1.1.0..0.1.0..0.1.1..1.0.1
		

Crossrefs

Formula

Empirical: a(n) = (1/384)*n^8 + (1/96)*n^7 - (5/64)*n^6 + (13/240)*n^5 + (27/128)*n^4 - (23/96)*n^3 - (13/96)*n^2 + (7/40)*n.
Empirical g.f.: x^3*(2 + 20*x + 23*x^2 - 9*x^3 - x^4) / (1 - x)^9. - Colin Barker, May 05 2018

A194477 Number of ways to arrange 5 indistinguishable points on an n X n X n triangular grid so that no three points are in the same row or diagonal.

Original entry on oeis.org

0, 0, 0, 39, 909, 8568, 50526, 221508, 789453, 2412333, 6542316, 16127397, 36762726, 78495417, 158548572, 305303544, 563965038, 1004432454, 1732013856, 2901747051, 4737236427, 7555075374, 11796103242, 18064943820, 27179490195, 40232239515
Offset: 1

Views

Author

R. H. Hardin, Aug 26 2011

Keywords

Comments

Column 5 of A194480.

Examples

			Some solutions for 4 X 4 X 4:
.....0........0........0........0........0........1........1........0
....0.1......0.1......1.0......1.0......1.0......0.0......1.0......0.1
...1.1.0....1.0.1....1.0.1....0.1.1....1.0.1....1.0.1....0.1.0....1.0.1
..0.0.1.1..0.1.1.0..0.1.1.0..1.1.0.0..0.1.0.1..0.1.1.0..0.1.0.1..1.1.0.0
		

Crossrefs

Cf. A194480.

Formula

Empirical: a(n) = (1/3840)*n^10 + (1/768)*n^9 - (7/384)*n^8 + (37/1920)*n^7 + (737/3840)*n^6 - (2347/3840)*n^5 + (101/192)*n^4 + (93/320)*n^3 - (7/10)*n^2 + (3/10)*n.
Empirical g.f.: 3*x^4*(13 + 160*x + 238*x^2 - 54*x^3 - 51*x^4 + 9*x^5) / (1 - x)^11. - Colin Barker, May 05 2018

A194478 Number of ways to arrange 6 indistinguishable points on an n X n X n triangular grid so that no three points are in the same row or diagonal.

Original entry on oeis.org

0, 0, 0, 1, 337, 8733, 96478, 668028, 3413828, 14054915, 49171641, 151422970, 420674150, 1073422309, 2550004472, 5699074284, 12082541388, 24462528078, 47555986746, 89173692795, 161899772067, 285517344145, 490447009030
Offset: 1

Views

Author

R. H. Hardin, Aug 26 2011

Keywords

Examples

			Some solutions for 5 X 5 X 5:
      0          0          1          0          0          1          1
     0 0        1 0        0 0        1 1        1 0        0 0        0 1
    1 1 0      0 0 1      0 1 0      0 0 0      1 0 1      0 1 0      1 0 0
   0 0 1 1    0 1 0 1    0 1 1 0    1 0 0 1    0 1 0 1    0 1 1 0    0 0 1 0
  1 0 0 0 1  1 0 0 1 0  1 0 0 0 1  0 1 1 0 0  0 1 0 0 0  0 0 1 0 1  0 0 1 1 0
		

Crossrefs

Column 6 of A194480.

Formula

From Manuel Kauers and Christoph Koutschan, Mar 02 2023: (Start)
a(n) = (1/256)*(-1)^n*(2*n - 7)*(n^2 - 7*n + 13) + (1/322560)*(7*n^12 + 42*n^11 - 945*n^10 + 1274*n^9 + 26089*n^8 - 128810*n^7 + 175693*n^6 + 205366*n^5 - 810796*n^4 + 601328*n^3 + 354172*n^2 - 582180*n + 114660).
Recurrence: (n-2)*(14*n^11 + 70*n^10 - 2051*n^9 + 5299*n^8 + 50106*n^7 - 359946*n^6 + 953463*n^5 - 1085555*n^4 - 364412*n^3 + 3593716*n^2 - 6028304*n + 3620736)*a(n+2) + (-126*n^11 - 966*n^10 + 13377*n^9 + 4662*n^8 - 354550*n^7 + 1123664*n^6 - 1113309*n^5 + 85056*n^4 + 1719696*n^3 - 7286000*n^2 + 10210192*n - 3854400)*a(n+1) - (n+2)*(14*n^11 + 224*n^10 - 581*n^9 - 7700*n^8 + 31682*n^7 - 11948*n^6 - 91561*n^5 + 168104*n^4 - 482042*n^3 + 1253272*n^2 - 1293160*n + 383136)*a(n) = 0. (End)

A194479 Number of ways to arrange 7 indistinguishable points on an n X n X n triangular grid so that no three points are in the same row or diagonal.

Original entry on oeis.org

0, 0, 0, 0, 15, 3525, 98473, 1237434, 9821400, 57367112, 268378248, 1059987987, 3661533037, 11341971885, 32090198922, 84099053568, 206386405560, 478423135296, 1054963957500, 2225704950054, 4514320792971, 8838377453829
Offset: 1

Views

Author

R. H. Hardin, Aug 26 2011

Keywords

Comments

Column 7 of A194480.

Examples

			Some solutions for 5 X 5 X 5:
......0..........0..........1..........0..........0..........1..........1
.....1.0........0.1........0.0........1.0........0.1........0.0........0.0
....0.1.1......1.1.0......1.0.1......1.0.1......1.0.1......1.1.0......0.1.1
...1.0.0.1....1.0.0.1....0.1.1.0....0.1.1.0....1.0.1.0....0.0.1.1....1.1.0.0
..0.1.1.0.0..0.0.1.1.0..0.1.0.1.0..0.1.0.0.1..0.1.0.1.0..0.1.1.0.0..0.0.1.1.0
		
Showing 1-5 of 5 results.