A194545 Total sum of nonprime parts in all partitions of n.
0, 1, 2, 4, 11, 16, 33, 48, 89, 134, 214, 305, 478, 663, 976, 1356, 1934, 2617, 3654, 4877, 6652, 8808, 11772, 15386, 20329, 26308, 34249, 43987, 56651, 72079, 92008, 116171, 146967, 184381, 231399, 288398, 359581, 445426, 551721, 679868, 837238, 1026256
Offset: 0
Keywords
Examples
For n = 6 we have: -------------------------------------- . Sum of Partitions nonprime parts -------------------------------------- 6 .......................... 6 3 + 3 ...................... 0 4 + 2 ...................... 4 2 + 2 + 2 .................. 0 5 + 1 ...................... 1 3 + 2 + 1 .................. 1 4 + 1 + 1 .................. 6 2 + 2 + 1 + 1 .............. 2 3 + 1 + 1 + 1 .............. 3 2 + 1 + 1 + 1 + 1 .......... 4 1 + 1 + 1 + 1 + 1 + 1 ...... 6 -------------------------------------- Total ..................... 33 So a(6) = 33.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Programs
-
Maple
b:= proc(n, i) option remember; local h, j, t; if n<0 then [0, 0] elif n=0 then [1, 0] elif i<1 then [0, 0] else h:= [0, 0]; for j from 0 to iquo(n, i) do t:= b(n-i*j, i-1); h:= [h[1]+t[1], h[2]+t[2]+`if`(isprime(i), 0, t[1]*i*j)] od; h fi end: a:= n-> b(n, n)[2]: seq(a(n), n=0..50); # Alois P. Heinz, Nov 20 2011
-
Mathematica
b[n_, i_] := b[n, i] = Module[{h, j, t}, Which[n<0, {0, 0}, n==0, {1, 0}, i < 1, {0, 0}, True, h = {0, 0}; For[j = 0, j <= Quotient[n, i], j++, t = b[n-i*j, i-1]; h = {h[[1]] + t[[1]], h[[2]] + t[[2]] + If[PrimeQ[i], 0, t[[1]]*i*j]}]; h]]; a[n_] := b[n, n][[2]]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Nov 03 2015, after Alois P. Heinz *)
Extensions
More terms from Alois P. Heinz, Nov 20 2011