cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A194545 Total sum of nonprime parts in all partitions of n.

Original entry on oeis.org

0, 1, 2, 4, 11, 16, 33, 48, 89, 134, 214, 305, 478, 663, 976, 1356, 1934, 2617, 3654, 4877, 6652, 8808, 11772, 15386, 20329, 26308, 34249, 43987, 56651, 72079, 92008, 116171, 146967, 184381, 231399, 288398, 359581, 445426, 551721, 679868, 837238, 1026256
Offset: 0

Views

Author

Omar E. Pol, Nov 20 2011

Keywords

Examples

			For n = 6 we have:
--------------------------------------
.                          Sum of
Partitions             nonprime parts
--------------------------------------
6 .......................... 6
3 + 3 ...................... 0
4 + 2 ...................... 4
2 + 2 + 2 .................. 0
5 + 1 ...................... 1
3 + 2 + 1 .................. 1
4 + 1 + 1 .................. 6
2 + 2 + 1 + 1 .............. 2
3 + 1 + 1 + 1 .............. 3
2 + 1 + 1 + 1 + 1 .......... 4
1 + 1 + 1 + 1 + 1 + 1 ...... 6
--------------------------------------
Total ..................... 33
So a(6) = 33.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; local h, j, t;
          if n<0 then [0, 0]
        elif n=0 then [1, 0]
        elif i<1 then [0, 0]
        else h:= [0, 0];
             for j from 0 to iquo(n, i) do
               t:= b(n-i*j, i-1);
               h:= [h[1]+t[1], h[2]+t[2]+`if`(isprime(i), 0, t[1]*i*j)]
             od; h
          fi
        end:
    a:= n-> b(n, n)[2]:
    seq(a(n), n=0..50);  # Alois P. Heinz, Nov 20 2011
  • Mathematica
    b[n_, i_] := b[n, i] = Module[{h, j, t}, Which[n<0, {0, 0}, n==0, {1, 0}, i < 1, {0, 0}, True, h = {0, 0}; For[j = 0, j <= Quotient[n, i], j++, t = b[n-i*j, i-1]; h = {h[[1]] + t[[1]], h[[2]] + t[[2]] + If[PrimeQ[i], 0, t[[1]]*i*j]}]; h]]; a[n_] := b[n, n][[2]]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Nov 03 2015, after Alois P. Heinz *)

Formula

a(n) = A066186(n) - A073118(n).

Extensions

More terms from Alois P. Heinz, Nov 20 2011