A194548 Triangle read by rows: T(n,k) = number of parts in the k-th partition of n that does not contain 1 as a part, with partitions in lexicographic order.
0, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 3, 2, 2, 1, 4, 3, 3, 2, 2, 2, 1, 4, 3, 3, 2, 3, 2, 2, 1, 5, 4, 4, 3, 3, 3, 2, 3, 2, 2, 2, 1, 5, 4, 4, 3, 4, 3, 3, 2, 3, 3, 2, 2, 2, 1, 6, 5, 5, 4, 4, 4, 3, 4, 3, 3, 3, 2, 4, 3, 3, 2, 3, 2, 2, 2, 1, 6, 5, 5, 4, 5, 4, 4, 3, 4, 4, 3, 3, 3, 2, 4, 3, 3, 3, 2, 3, 2, 2, 2, 1
Offset: 1
Examples
Written as a triangle: 0; 1; 1; 2,1; 2,1; 3,2,2,1; 3,2,2,1; 4,3,3,2,2,2,1; 4,3,3,2,3,2,2,1; 5,4,4,3,3,3,2,3,2,2,2,1; 5,4,4,3,4,3,3,2,3,3,2,2,2,1; 6,5,5,4,4,4,3,4,3,3,3,2,4,3,3,2,3,2,2,2,1; 6,5,5,4,5,4,4,3,4,4,3,3,3,2,4,3,3,3,2,3,2,2,2,1;
Links
- Alois P. Heinz, Rows n = 1..33, flattened
- Tilman Piesk, Table for A194602, showing the non-one addends.
Crossrefs
Programs
-
Maple
T:= proc(n) local b, l; b:= proc(n, i, t) if n=0 then l:=l, t elif i>n then else b(n-i, i, t+1); b(n, i+1, t) fi end; if n<2 then 0 else l:= NULL; b(n, 2, 0); l fi end: seq(T(n), n=1..15); # Alois P. Heinz, Dec 19 2011
-
Mathematica
T[n_] := Module[{b, l}, b[n0_, i_, t_] := If[n0==0, l = Append[l, t], If[i>n0, , b[n0-i, i, t+1]; b[n0, i+1, t]]]; If[n<2, {0}, l = {}; b[n, 2, 0]; l]]; Table[T[n], {n, 1, 15}] // Flatten (* Jean-François Alcover, Mar 05 2021, after Alois P. Heinz *)
Extensions
More terms from Alois P. Heinz, Dec 19 2011