A194552 Sum of all parts > 1 of all partitions of n.
0, 2, 5, 13, 23, 47, 75, 131, 203, 323, 477, 729, 1041, 1517, 2132, 3012, 4134, 5718, 7713, 10453, 13918, 18538, 24357, 32037, 41612, 54040, 69538, 89362, 113925, 145095, 183473, 231697, 290899, 364577, 454632, 566016, 701436, 867800, 1069430, 1315550, 1612595
Offset: 1
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
Programs
-
Maple
b:= proc(n, i) option remember; local h, t; if n<0 or i<1 then [0, 0] elif n=0 or i=1 then [1, 0] else h:= b(n, i-1); t:= b(n-i, i); [h[1]+t[1], h[2]+t[2] +t[1]*i] fi end: a:= n-> b(n, n)[2]: seq(a(n), n=1..50); # Alois P. Heinz, Dec 14 2011
-
Mathematica
a[n_] := n PartitionsP[n] -Total@Table[PartitionsP[k], {k, 0, n - 1}]; a /@ Range[40] (* George Beck, Oct 23 2014 *)
Formula
G.f.: (x/(1 - x)) * (d/dx) Product_{k>=2} 1/(1 - x^k). - Ilya Gutkovskiy, Mar 06 2021
Comments