cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A194552 Sum of all parts > 1 of all partitions of n.

Original entry on oeis.org

0, 2, 5, 13, 23, 47, 75, 131, 203, 323, 477, 729, 1041, 1517, 2132, 3012, 4134, 5718, 7713, 10453, 13918, 18538, 24357, 32037, 41612, 54040, 69538, 89362, 113925, 145095, 183473, 231697, 290899, 364577, 454632, 566016, 701436, 867800, 1069430, 1315550, 1612595
Offset: 1

Views

Author

Omar E. Pol, Dec 11 2011

Keywords

Comments

Also the total number of missing parts in the partitions of n. A missing part of a partition of n is any number from 1 to n not occurring as a part. For example for n = 3, 1,2 are missing from 3; 3 is missing from 2+1, and 2,3 are missing from 1+1+1, for a total of a(3) = 5. - George Beck, Oct 23 2014

Crossrefs

Partial sums of A138880.

Programs

  • Maple
    b:= proc(n, i) option remember; local h, t;
          if n<0 or i<1 then [0, 0]
        elif n=0 or i=1 then [1, 0]
        else h:= b(n, i-1); t:= b(n-i, i);
             [h[1]+t[1], h[2]+t[2] +t[1]*i]
          fi
        end:
    a:= n-> b(n, n)[2]:
    seq(a(n), n=1..50); # Alois P. Heinz, Dec 14 2011
  • Mathematica
    a[n_] := n PartitionsP[n] -Total@Table[PartitionsP[k], {k, 0, n - 1}]; a /@ Range[40] (* George Beck, Oct 23 2014 *)

Formula

a(n) = A066186(n) - A000070(n-1).
a(n) = n * A000041(n) - A000070(n-1). - George Beck, Oct 24 2014
G.f.: (x/(1 - x)) * (d/dx) Product_{k>=2} 1/(1 - x^k). - Ilya Gutkovskiy, Mar 06 2021