A194560 G.f.: Sum_{n>=1} G_n(x)^n where G_n(x) = x + x*G_n(x)^n.
1, 2, 2, 4, 2, 10, 2, 20, 14, 49, 2, 217, 2, 438, 310, 1580, 2, 6352, 2, 18062, 7824, 58799, 2, 258971, 2532, 742915, 246794, 2729095, 2, 11154954, 2, 35779660, 8414818, 129644809, 242354, 531132915, 2, 1767263211, 300830821, 6593815523, 2, 26289925026, 2, 91708135773
Offset: 1
Keywords
Examples
G.f.: A(x) = x + 2*x^2 + 2*x^3 + 4*x^4 + 2*x^5 + 10*x^6 + 2*x^7 + ... where A(x) = G_1(x) + G_2(x)^2 + G_3(x)^3 + G_4(x)^4 + G_5(x)^5 + ... and G_n(x) = x + x*G_n(x)^n is given by: G_n(x) = Sum_{k>=0} C(n*k+1,k)/(n*k+1)*x^(n*k+1), G_n(x)^n = Sum_{k>=1} C(n*k,k)/(n*k-k+1)*x^(n*k); the first few expansions of G_n(x)^n begin: G_1(x) = x + x^2 + x^3 + x^4 + x^5 + ... G_2(x)^2 = x^2 + 2*x^4 + 5*x^6 + 14*x^8 + ... + A000108(n)*x^(2*n) + ... G_3(x)^3 = x^3 + 3*x^6 + 12*x^9 + 55*x^12 + ... + A001764(n)*x^(3*n) + ... G_4(x)^4 = x^4 + 4*x^8 + 22*x^12 + 140*x^16 + ... + A002293(n)*x^(4*n) + ... G_5(x)^5 = x^5 + 5*x^10 + 35*x^15 + 285*x^20 + ... + A002294(n)*x^(5*n) + ...
Links
- Paul D. Hanna, Table of n, a(n) for n = 1..1000
- Eric Weisstein's World of Mathematics, Dyck Path.
- Wikipedia, Noncrossing partition.
Crossrefs
Programs
-
Mathematica
Table[Sum[Binomial[n,d]/(n-d+1),{d,Divisors[n]}],{n,20}] (* Gus Wiseman, Feb 15 2019 *)
-
PARI
{a(n)=if(n<1,0,sumdiv(n,d,binomial(n,d)/(n-d+1)))}
-
PARI
{a(n)=polcoeff(sum(m=1,n,serreverse(x/(1+x^m+x*O(x^n)))^m),n)}
Formula
a(n) = Sum_{d|n} C(n,d)/(n-d+1).
G.f.: Sum_{n>=1} Series_Reversion( x/(1+x^n) )^n.
Comments