cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A054726 Number of graphs with n nodes on a circle without crossing edges.

Original entry on oeis.org

1, 1, 2, 8, 48, 352, 2880, 25216, 231168, 2190848, 21292032, 211044352, 2125246464, 21681954816, 223623069696, 2327818174464, 24424842461184, 258054752698368, 2742964283768832, 29312424612462592, 314739971287154688, 3393951437605044224, 36739207546043105280
Offset: 0

Views

Author

Philippe Flajolet, Apr 20 2000

Keywords

Comments

Related to Schröder's second problem.
A001006 gives number of ways of drawing any number of nonintersecting chords between n points on a circle, while this sequence gives number of ways of drawing noncrossing chords between n points on a circle. The difference is that nonintersection chords have no point in common, while noncrossing chords may share an endpoint. - David W. Wilson, Jan 30 2003
For n>0, a(n) = number of lattice paths from (0,0) to (n-1,n-1) that consist of steps (i,j), i,j nonnegative integers not both 0 and that stay strictly below the line y=x except at their endpoints. For example, a(3)=8 counts the paths with following step sequences: {(2, 2)}, {(2, 1), (0, 1)}, {(2, 0), (0, 2)}, {(2, 0), (0, 1), (0, 1)}, {(1, 0), (1, 2)}, {(1, 0), (1, 1), (0, 1)}, {(1, 0), (1, 0), (0, 2)}, {(1, 0), (1, 0), (0, 1), (0, 1)}. If the word "strictly" is replaced by "weakly", the counting sequence becomes A059435. - David Callan, Jun 07 2006
The nodes on the circle are distinguished by their positions but are otherwise unlabeled. - Lee A. Newberg, Aug 09 2011
From Gus Wiseman, Jun 22 2019: (Start)
Conjecture: Also the number of simple graphs with vertices {1..n} not containing any pair of nesting edges. Two edges {a,b}, {c,d} where a < b and c < d are nesting if a < c and b > d or a > c and b < d. For example, the a(0) = 1 through a(3) = 8 non-nesting edge-sets are:
{} {} {} {}
{12} {12}
{13}
{23}
{12,13}
{12,23}
{13,23}
{12,13,23}
(End)

Crossrefs

Sequences related to chords in a circle: A001006, A054726, A006533, A006561, A006600, A007569, A007678. See also entries for chord diagrams in Index file.
Cf. A000108 (non-crossing set partitions), A000124, A006125, A007297 (connected case), A194560, A306438, A324167, A324169 (covering case), A324173, A326210.

Programs

  • Maple
    with(combstruct): br:= {EA = Union(Sequence(EA, card >= 2), Prod(V, Sequence(EA), Sequence(EA))), V=Union(Prod(Z, G)), G=Union(Epsilon, Prod(Z, G), Prod(V,V,Sequence(EA), Sequence(EA), Sequence(Union(Sequence(EA,card>=1), Prod(V,Sequence(EA),Sequence(EA)))))) }; ggSeq := [seq(count([G, br], size=i), i=0..20)];
  • Mathematica
    Join[{a = 1, b = 1}, Table[c = (6*(2*n - 3)*b)/n - (4*(n - 3) a)/n; a = b; b = c, {n, 1, 40}]] (* Vladimir Joseph Stephan Orlovsky, Jul 11 2011 *)
    nn=8;
    croXQ[stn_]:=MatchQ[stn,{_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;xGus Wiseman, Feb 19 2019 *)
  • PARI
    z='z+O('z^66); Vec( 1+3/2*z-z^2-z/2*sqrt(1-12*z+4*z^2) ) \\ Joerg Arndt, Mar 01 2014

Formula

a(n) = 2^n*A001003(n-2) for n>2.
From Lee A. Newberg, Aug 09 2011: (Start)
G.f.: 1 + (3/2)*z - z^2 - (z/2)*sqrt(1 - 12*z + 4*z^2);
D-finite with recurrence: a(n) = ((12*n-30)*a(n-1) - (4*n-16)*a(n-2)) / (n-1) for n>1. (End)
a(n) ~ 2^(n - 7/4) * (1 + sqrt(2))^(2*n-3) / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Oct 11 2012, simplified Dec 24 2017
a(n) = 2^(n-2) * (Legendre_P(n-1, 3) - Legendre_P(n-3, 3))/(2*n - 3) = 2^n * (Legendre_P(n-1, 3) - 3*Legendre_P(n-2, 3))/(4*n - 8), both for n >= 3. - Peter Bala, May 06 2024

Extensions

Offset changed to 0 by Lee A. Newberg, Aug 03 2011

A016098 Number of crossing set partitions of {1,2,...,n}.

Original entry on oeis.org

0, 0, 0, 0, 1, 10, 71, 448, 2710, 16285, 99179, 619784, 4005585, 26901537, 188224882, 1373263700, 10444784477, 82735225014, 681599167459, 5830974941867, 51717594114952, 474845349889731, 4506624255883683, 44151662795470696, 445957579390657965
Offset: 0

Views

Author

Keywords

Comments

A partition p of the set N_n = {1,2,...,n}, whose elements are arranged in their natural order, is crossing if there exist four numbers 1 <= i < k < j < l <= n such that i and j are in the same block, k and l are in the same block, but i,j and k,l belong to two different blocks. Noncrossing partitions are also called "planar rhyme schemes". - Peter Luschny, Apr 28 2011
Consider a set of A000217(n) balls of n colors in which, for each integer k = 1 to n, exactly one color appears in the set a total of k times. (Each ball has exactly one color and is indistinguishable from other balls of the same color.) a(n+1) equals the number of ways to choose 0 or more balls of each color while satisfying the following conditions:
1. No two colors are chosen the same positive number of times.
2. Among colors chosen at least once, there exists at least one pair of colors (c, d) such that color c is chosen more times than color d, but color d appears more times in the original set than color c.
If the second requirement is removed, the number of acceptable ways to choose equals A000110(n+1). The number of ways that meet the first requirement, but fail to meet the second, equals A000108(n+1). See related comment for A085082. - Matthew Vandermast, Nov 22 2010
In the May 1978 Scientific American, Martin Gardner mentions Lady Murasaki's The Tale of Genji in which chapter heads illustrate A000110(5) = 52. These are the "crossing" cases mentioned there as being discussed by JoAnne Growney's 1970 thesis. - Alford Arnold, expanded by Charles R Greathouse IV, Jun 21 2021

Examples

			13|24 is the only crossing partition of {1,2,3,4}.
G.f. = x^4 + 10*x^5 + 71*x^6 + 448*x^7 + 2710*x^8 + 16285*x^9 + ...
From _Gus Wiseman_, Feb 15 2019: (Start)
The a(5) = 10 crossing set partitions:
  {{1,2,4},{3,5}}
  {{1,3},{2,4,5}}
  {{1,3,4},{2,5}}
  {{1,3,5},{2,4}}
  {{1,4},{2,3,5}}
  {{1},{2,4},{3,5}}
  {{1,3},{2,4},{5}}
  {{1,3},{2,5},{4}}
  {{1,4},{2},{3,5}}
  {{1,4},{2,5},{3}}
(End)
		

References

  • JoAnne (Simpson) Growney, Structure Inherent in a Free Groupoid, PhD Dissertation, The University of Oklahoma, 1970.

Crossrefs

Programs

  • Magma
    [Bell(n)-Catalan(n): n in [0..25]]; // Vincenzo Librandi, Aug 31 2016
  • Maple
    A016098 := n -> combinat[bell](n) - binomial(2*n,n)/(n+1):
    seq(A016098(n),n=0..22); # Peter Luschny, Apr 28 2011
  • Mathematica
    Table[Sum[StirlingS2[n, k], {k, 0, n}] - Binomial[2*n, n]/(n + 1), {n, 0, 25}] (* T. D. Noe, May 29 2012 *)
    Table[BellB[n] - CatalanNumber[n], {n, 0, 40}] (* Vincenzo Librandi, Aug 31 2016 *)
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    croXQ[stn_]:=MatchQ[stn,{_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;xGus Wiseman, Feb 17 2019 *)
  • MuPAD
    combinat::bell(n)-combinat::catalan(n) $ n = 0..26 // Zerinvary Lajos, May 10 2008
    
  • Sage
    [bell_number(i)-catalan_number(i) for i in range(23)] # Zerinvary Lajos, Mar 14 2009
    

Formula

a(n) = A000110(n) - A000108(n).
a(n) = Sum_{k=0..n} S2(n,k) - binomial(2*n,n)/(n+1); S2(n,k) Stirling numbers of the second kind.
E.g.f.: exp(exp(x)-1) - (BesselI(0,2*x) - BesselI(1,2*x))*exp(2*x). - Ilya Gutkovskiy, Aug 31 2016

Extensions

Offset corrected by Matthew Vandermast, Nov 22 2010
New name from Peter Luschny, Apr 28 2011

A007297 Number of connected graphs on n labeled nodes on a circle with straight-line edges that don't cross.

Original entry on oeis.org

1, 1, 4, 23, 156, 1162, 9192, 75819, 644908, 5616182, 49826712, 448771622, 4092553752, 37714212564, 350658882768, 3285490743987, 30989950019532, 294031964658430, 2804331954047160, 26870823304476690, 258548658860327880
Offset: 1

Views

Author

Keywords

Comments

Apart from the initial 1, reversion of g.f. for A162395 (squares with signs): see A263843.

Examples

			G.f. = x*(1 + x + 4*x^2 + 23*x^3 + 156*x^4 + 1162*x^5 + 9192*x^6 + 75819*x^7 + ...).
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A162395, A000290. 4th row of A107111. Row sums of A089434.
See A263843 for a variant.
Cf. A000108 (non-crossing set partitions), A001006, A001187, A054726 (non-crossing graphs), A054921, A099947, A194560, A293510, A323818, A324167, A324169, A324173.

Programs

  • Maple
    A007297:=proc(n) if n = 1 then 1 else add(binomial(3*n - 3, n + j)*binomial(j - 1, j - n + 1), j = n - 1 .. 2*n - 3)/(n - 1); fi; end;
  • Mathematica
    CoefficientList[ InverseSeries[ Series[(x-x^2)/(1+x)^3, {x, 0, 20}], x], x] // Rest (* From Jean-François Alcover, May 19 2011, after PARI prog. *)
    Table[Binomial[3n, 2n+1] Hypergeometric2F1[1-n, n, 2n+2, -1]/n, {n, 1, 20}] (* Vladimir Reshetnikov, Oct 25 2015 *)
  • PARI
    a(n)=if(n<0,0,polcoeff(serreverse((x-x^2)/(1+x)^3+O(x^(n+2))),n+1)) /* Ralf Stephan */

Formula

Apart from initial term, g.f. is the series reversion of (x-x^2)/(1+x)^3 (A162395). See A263843. - Vladimir Kruchinin, Feb 08 2013
G.f.: (g-z)/z, where g=-1/3+(2/3)*sqrt(1+9z)*sin((1/3)*arcsin((2+27z+54z^2)/2/(1+9*z)^(3/2))). - Emeric Deutsch, Dec 02 2002
a(n) = (1/n)*Sum_{k=0..n} binomial(3n, n-k-1)*binomial(n+k-1, k). - Paul Barry, May 11 2005
a(n) = 4^(n-1)*(Gamma(3*n/2-1)/Gamma(n/2+1)/Gamma(n) -Gamma((3*n-1)/2)/ Gamma( (n+1)/2)/Gamma(n+1)). - Mark van Hoeij, Aug 27 2005, adapted to offset Feb 21 2020 by R. J. Mathar
a(n) = 4^n * binomial(3*n/2, n/2) / (9*n-6) - 4^(n-1) * binomial(3*(n-1)/2, (n-1)/2 ) / n. - Mark van Hoeij, Aug 27 2005, adapted to offset Feb 21 2020 by R. J. Mathar
D-finite with recurrence: n*(n-1)*(3*n-4)*a(n) +36*(n-1)*a(n-1) -12*(3*n-8)*(3*n-1)*(3*n-7)*a(n-2)=0. - Mark van Hoeij, Aug 27 2005, adapted to offset Feb 21 2020 by R. J. Mathar
a(n) = (1/n)*Sum_{k=0..n} C(3n, k)*C(2n-k-2, n-1). - Paul Barry, Sep 27 2005
a(n) ~ (2-sqrt(3)) * 6^n * 3^(n/2) / (sqrt(2*Pi) * n^(3/2)). - Vaclav Kotesovec, Mar 17 2014
a(n) = binomial(3*n,2*n+1)*hypergeom([1-n,n], [2*n+2], -1)/n. - Vladimir Reshetnikov, Oct 25 2015
a(n) = 2*A078531(n) - A085614(n+1). - Vladimir Reshetnikov, Apr 24 2016

Extensions

Better description from Philippe Flajolet, Apr 20 2000
More terms from James Sellers, Aug 21 2000
Definition revised and initial a(1)=1 added by N. J. A. Sloane, Nov 05 2015 at the suggestion of Axel Boldt. Some of the formulas may now need to be adjusted slightly.

A324171 Number of non-crossing multiset partitions of normal multisets of size n.

Original entry on oeis.org

1, 1, 4, 16, 75, 378, 2042, 11489, 66697
Offset: 0

Views

Author

Gus Wiseman, Feb 17 2019

Keywords

Comments

A multiset is normal if its union is an initial interval of positive integers.
A multiset partition is crossing if it has a 2-element submultiset of the form {{...x...y...}, {...z...t...}} where x < z < y < t or z < x < t < y.

Examples

			The A255906(5) - a(5) = 22 crossing multiset partitions:
  {{13}{124}}  {{1}{13}{24}}
  {{13}{224}}  {{1}{24}{35}}
  {{13}{234}}  {{2}{13}{24}}
  {{13}{244}}  {{2}{14}{35}}
  {{13}{245}}  {{3}{13}{24}}
  {{14}{235}}  {{3}{14}{25}}
  {{24}{113}}  {{4}{13}{24}}
  {{24}{123}}  {{4}{13}{25}}
  {{24}{133}}  {{5}{13}{24}}
  {{24}{134}}
  {{24}{135}}
  {{25}{134}}
  {{35}{124}}
		

Crossrefs

Cf. A000108 (non-crossing set partitions), A000124, A001006, A001055, A001263, A007297, A054726 (non-crossing graphs), A099947, A194560, A255906 (multiset partitions of normal multisets), A306438.

Programs

  • Mathematica
    nonXQ[stn_]:=!MatchQ[stn,{_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;x_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    Table[Sum[Length[Select[mps[m],nonXQ]],{m,allnorm[n]}],{n,0,8}]

A206290 G.f.: Sum_{n>=0} Product_{k=1..n} Series_Reversion( x/(1 + x^k) ).

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 12, 17, 29, 44, 77, 114, 218, 330, 617, 987, 1913, 2968, 6068, 9500, 19263, 31399, 64268, 101702, 218891, 348559, 735823, 1205239, 2576727, 4119884, 9100854, 14588992, 31841260, 52163378, 114485092, 183947681, 414704366, 667453931, 1487920000
Offset: 0

Views

Author

Paul D. Hanna, Feb 05 2012

Keywords

Comments

Compare to the g.f. of partition numbers (A000041): Sum_{n>=0} Product_{k=1..n} x/(1 - x^k).

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 12*x^6 + 17*x^7 +...
such that, by definition,
A(x) = 1 + G_1(x) + G_1(x)*G_2(x) + G_1(x)*G_2(x)*G_3(x) + G_1(x)*G_2(x)*G_3(x)*G_4(x) +...
where G_n( x/(1 + x^n) ) = x.
The first few expansions of G_n(x) begin:
G_1(x) = x + x^2 + x^3 + x^4 + x^5 + x^6 +...+ x^(n+1) +...
G_2(x) = x + x^3 + 2*x^5 + 5*x^7 + 14*x^9 +...+ A000108(n)*x^(2*n+1) +...
G_3(x) = x + x^4 + 3*x^7 + 12*x^10 + 55*x^13 +...+ A001764(n)*x^(3*n+1) +...
G_4(x) = x + x^5 + 4*x^9 + 22*x^13 + 140*x^17 +...+ A002293(n)*x^(4*n+1) +...
G_5(x) = x + x^6 + 5*x^11 + 35*x^16 + 285*x^21 +...+ A002294(n)*x^(5*n+1) +...
G_6(x) = x + x^7 + 6*x^13 + 51*x^19 + 506*x^25 +...+ A002295(n)*x^(6*n+1) +...
G_7(x) = x + x^8 + 7*x^15 + 70*x^22 + 819*x^29 +...+ A002296(n)*x^(7*n+1) +...
Note that G_n(x) = x + x*G_n(x)^n.
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(sum(m=0,n,prod(k=1,m,serreverse(x/(1+x^k+x*O(x^n))))),n)}
    for(n=0,45,print1(a(n),", "))

Formula

G.f.: Sum_{n>=0} Product_{k=1..n} G_k(x), where G_n(x) is defined by:
(1) G_n(x) = Series_Reversion( x/(1 + x^n) ),
(2) G_n(x) = x + x*G_n(x)^n,
(3) G_n(x) = Sum_{k>=0} binomial(n*k+1, k) * x^(n*k+1) / (n*k+1).

A306437 Regular triangle read by rows where T(n,k) is the number of non-crossing set partitions of {1, ..., n} in which all blocks have size k.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 1, 2, 0, 1, 1, 0, 0, 0, 1, 1, 5, 3, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 14, 0, 4, 0, 0, 0, 1, 1, 0, 12, 0, 0, 0, 0, 0, 1, 1, 42, 0, 0, 5, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 132, 55, 22, 0, 6, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 429, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Gus Wiseman, Feb 15 2019

Keywords

Examples

			Triangle begins:
  1
  1   1
  1   0   1
  1   2   0   1
  1   0   0   0   1
  1   5   3   0   0   1
  1   0   0   0   0   0   1
  1  14   0   4   0   0   0   1
  1   0  12   0   0   0   0   0   1
  1  42   0   0   5   0   0   0   0   1
  1   0   0   0   0   0   0   0   0   0   1
  1 132  55  22   0   6   0   0   0   0   0   1
Row 6 counts the following non-crossing set partitions (empty columns not shown):
  {{1}{2}{3}{4}{5}{6}}  {{12}{34}{56}}  {{123}{456}}  {{123456}}
                        {{12}{36}{45}}  {{126}{345}}
                        {{14}{23}{56}}  {{156}{234}}
                        {{16}{23}{45}}
                        {{16}{25}{34}}
		

Crossrefs

Row sums are A194560. Column k=2 is A126120. Trisection of column k=3 is A001764.

Programs

  • Maple
    T:= (n, k)-> `if`(irem(n, k)=0, binomial(n, n/k)/(n-n/k+1), 0):
    seq(seq(T(n,k), k=1..n), n=1..14);  # Alois P. Heinz, Feb 16 2019
  • Mathematica
    Table[Table[If[Divisible[n,d],d/n*Binomial[n,n/d-1],0],{d,n}],{n,15}]

Formula

If d|n, then T(n, d) = binomial(n, n/d)/(n - n/d + 1); otherwise T(n, k) = 0 [Theorem 1 of Kreweras].

A206289 G.f.: Sum_{n>=0} Product_{k=1..n} Series_Reversion( x*(1 - x^k) ).

Original entry on oeis.org

1, 1, 2, 4, 10, 25, 73, 214, 679, 2189, 7331, 24867, 86269, 302144, 1072621, 3837768, 13853674, 50319789, 183941789, 675731105, 2494370326, 9244865453, 34394851701, 128390336942, 480749791772, 1805161153783, 6795744287172, 25643914891284, 96980809856731
Offset: 0

Views

Author

Paul D. Hanna, Feb 05 2012

Keywords

Comments

Compare to the g.f. of partitions of n into distinct parts (A000009): Sum_{n>=0} Product_{k=1..n} x*(1 + x^k).

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 4*x^3 + 10*x^4 + 25*x^5 + 73*x^6 + 214*x^7 +...
such that, by definition,
A(x) = 1 + G_1(x) + G_1(x)*G_2(x) + G_1(x)*G_2(x)*G_3(x) + G_1(x)*G_2(x)*G_3(x)*G_4(x) +...
where G_n( x*(1 - x^n) ) = x.
The first few expansions of G_n(x) begin:
G_1(x) = x + x^2 + 2*x^3 + 5*x^4 + 14*x^5 +...+ A000108(n)*x^(n+1) +...
G_2(x) = x + x^3 + 3*x^5 + 12*x^7 + 55*x^9 +...+ A001764(n)*x^(2*n+1) +...
G_3(x) = x + x^4 + 4*x^7 + 22*x^10 + 140*x^13 +...+ A002293(n)*x^(3*n+1) +...
G_4(x) = x + x^5 + 5*x^9 + 35*x^13 + 285*x^17 +...+ A002294(n)*x^(4*n+1) +...
G_5(x) = x + x^6 + 6*x^11 + 51*x^16 + 506*x^21 +...+ A002295(n)*x^(5*n+1) +...
G_6(x) = x + x^7 + 7*x^13 + 70*x^19 + 819*x^25 +...+ A002296(n)*x^(6*n+1) +...
Note that G_n(x) = x + x*G_n(x)^(n+1).
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(sum(m=0,n,prod(k=1,m,serreverse(x*(1-x^k+x*O(x^n))))),n)}
    for(n=0,35,print1(a(n),", "))

Formula

G.f.: Sum_{n>=0} Product_{k=1..n} G_k(x), where G_n(x) is defined by:
(1) G_n(x) = Series_Reversion( x*(1 - x^n) ),
(2) G_n(x) = x + x*G_n(x)^(n+1),
(3) G_n(x) = Sum_{k>=0} binomial(n*k+k+1, k) * x^(n*k+1) / (n*k+k+1).
a(n) ~ c * 4^n / n^(3/2), where c = 0.19197348199... . - Vaclav Kotesovec, Nov 06 2014

A194559 E.g.f.: exp( Sum_{n>=1} G_n(x)^n/n ) where G_n(x) = x + x*G_n(x)^n.

Original entry on oeis.org

1, 1, 4, 18, 132, 900, 10560, 96600, 1500240, 19066320, 369714240, 5359163040, 147177898560, 2443958637120, 76298578836480, 1621294897622400, 58906376034105600, 1309870975014201600, 60357698670132864000, 1469955465552513139200, 74262907856067567436800
Offset: 0

Views

Author

Paul D. Hanna, Aug 28 2011

Keywords

Examples

			E.g.f.: A(x) = 1 + x + 4*x^2/2! + 18*x^3/3! + 132*x^4/4! + 900*x^5/5! +...
The logarithm of the g.f. equals:
log(A(x)) = G_1(x) + G_2(x)^2/2 + G_3(x)^3/3 + G_4(x)^4/4 +...
where G_n(x) = x + x*G_n(x)^n is given by:
G_n(x) = Sum_{k>=0} C(n*k+1,k)/(n*k+1)*x^(n*k+1),
G_n(x)^n = Sum_{k>=1} C(n*k,k)/(n*k-k+1)*x^(n*k);
the first few expansions of G_n(x)^n begin:
G_1(x) = x + x^2 + x^3 + x^4 + x^5 +...
G_2(x)^2 = x^2 + 2*x^4 + 5*x^6 + 14*x^8 +...+ A000108(n)*x^(2*n) +...
G_3(x)^3 = x^3 + 3*x^6 + 12*x^9 + 55*x^12 +...+ A001764(n)*x^(3*n) +...
G_4(x)^4 = x^4 + 4*x^8 + 22*x^12 + 140*x^16 +...+ A002293(n)*x^(4*n) +...
G_5(x)^5 = x^5 + 5*x^10 + 35*x^15 + 285*x^20 +...+ A002294(n)*x^(5*n) +...
		

Crossrefs

Programs

  • PARI
    {a(n)=n!*polcoeff(exp(sum(m=1,n+1,serreverse(x/(1+x^m+x*O(x^n)))^m/m)),n)}

Formula

a(n) = n!/floor(n/2)! * A194558(n).
E.g.f.: A(x) = exp( Sum_{n>=1} Series_Reversion( x/(1+x^n) )^n/n ).
Showing 1-8 of 8 results.