cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A016098 Number of crossing set partitions of {1,2,...,n}.

Original entry on oeis.org

0, 0, 0, 0, 1, 10, 71, 448, 2710, 16285, 99179, 619784, 4005585, 26901537, 188224882, 1373263700, 10444784477, 82735225014, 681599167459, 5830974941867, 51717594114952, 474845349889731, 4506624255883683, 44151662795470696, 445957579390657965
Offset: 0

Views

Author

Keywords

Comments

A partition p of the set N_n = {1,2,...,n}, whose elements are arranged in their natural order, is crossing if there exist four numbers 1 <= i < k < j < l <= n such that i and j are in the same block, k and l are in the same block, but i,j and k,l belong to two different blocks. Noncrossing partitions are also called "planar rhyme schemes". - Peter Luschny, Apr 28 2011
Consider a set of A000217(n) balls of n colors in which, for each integer k = 1 to n, exactly one color appears in the set a total of k times. (Each ball has exactly one color and is indistinguishable from other balls of the same color.) a(n+1) equals the number of ways to choose 0 or more balls of each color while satisfying the following conditions:
1. No two colors are chosen the same positive number of times.
2. Among colors chosen at least once, there exists at least one pair of colors (c, d) such that color c is chosen more times than color d, but color d appears more times in the original set than color c.
If the second requirement is removed, the number of acceptable ways to choose equals A000110(n+1). The number of ways that meet the first requirement, but fail to meet the second, equals A000108(n+1). See related comment for A085082. - Matthew Vandermast, Nov 22 2010
In the May 1978 Scientific American, Martin Gardner mentions Lady Murasaki's The Tale of Genji in which chapter heads illustrate A000110(5) = 52. These are the "crossing" cases mentioned there as being discussed by JoAnne Growney's 1970 thesis. - Alford Arnold, expanded by Charles R Greathouse IV, Jun 21 2021

Examples

			13|24 is the only crossing partition of {1,2,3,4}.
G.f. = x^4 + 10*x^5 + 71*x^6 + 448*x^7 + 2710*x^8 + 16285*x^9 + ...
From _Gus Wiseman_, Feb 15 2019: (Start)
The a(5) = 10 crossing set partitions:
  {{1,2,4},{3,5}}
  {{1,3},{2,4,5}}
  {{1,3,4},{2,5}}
  {{1,3,5},{2,4}}
  {{1,4},{2,3,5}}
  {{1},{2,4},{3,5}}
  {{1,3},{2,4},{5}}
  {{1,3},{2,5},{4}}
  {{1,4},{2},{3,5}}
  {{1,4},{2,5},{3}}
(End)
		

References

  • JoAnne (Simpson) Growney, Structure Inherent in a Free Groupoid, PhD Dissertation, The University of Oklahoma, 1970.

Crossrefs

Programs

  • Magma
    [Bell(n)-Catalan(n): n in [0..25]]; // Vincenzo Librandi, Aug 31 2016
  • Maple
    A016098 := n -> combinat[bell](n) - binomial(2*n,n)/(n+1):
    seq(A016098(n),n=0..22); # Peter Luschny, Apr 28 2011
  • Mathematica
    Table[Sum[StirlingS2[n, k], {k, 0, n}] - Binomial[2*n, n]/(n + 1), {n, 0, 25}] (* T. D. Noe, May 29 2012 *)
    Table[BellB[n] - CatalanNumber[n], {n, 0, 40}] (* Vincenzo Librandi, Aug 31 2016 *)
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    croXQ[stn_]:=MatchQ[stn,{_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;xGus Wiseman, Feb 17 2019 *)
  • MuPAD
    combinat::bell(n)-combinat::catalan(n) $ n = 0..26 // Zerinvary Lajos, May 10 2008
    
  • Sage
    [bell_number(i)-catalan_number(i) for i in range(23)] # Zerinvary Lajos, Mar 14 2009
    

Formula

a(n) = A000110(n) - A000108(n).
a(n) = Sum_{k=0..n} S2(n,k) - binomial(2*n,n)/(n+1); S2(n,k) Stirling numbers of the second kind.
E.g.f.: exp(exp(x)-1) - (BesselI(0,2*x) - BesselI(1,2*x))*exp(2*x). - Ilya Gutkovskiy, Aug 31 2016

Extensions

Offset corrected by Matthew Vandermast, Nov 22 2010
New name from Peter Luschny, Apr 28 2011

A306438 Number of non-crossing set partitions whose block sizes are the prime indices of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 1, 2, 4, 1, 6, 1, 5, 5, 1, 1, 10, 1, 10, 6, 6, 1, 10, 3, 7, 5, 15, 1, 30, 1, 1, 7, 8, 7, 30, 1, 9, 8, 20, 1, 42, 1, 21, 21, 10, 1, 15, 4, 21, 9, 28, 1, 35, 8, 35, 10, 11, 1, 105, 1, 12, 28, 1, 9, 56, 1, 36, 11, 56, 1, 70, 1, 13, 28, 45, 9
Offset: 1

Views

Author

Gus Wiseman, Feb 15 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The a(18) = 10 non-crossing set partitions of type (2, 2, 1) are:
  {{1},{2,3},{4,5}}
  {{1},{2,5},{3,4}}
  {{1,2},{3},{4,5}}
  {{1,2},{3,4},{5}}
  {{1,2},{3,5},{4}}
  {{1,3},{2},{4,5}}
  {{1,4},{2,3},{5}}
  {{1,5},{2},{3,4}}
  {{1,5},{2,3},{4}}
  {{1,5},{2,4},{3}}
Missing from this list are the following crossing set partitions:
  {{1},{2,4},{3,5}}
  {{1,3},{2,4},{5}}
  {{1,3},{2,5},{4}}
  {{1,4},{2},{3,5}}
  {{1,4},{2,5},{3}}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[If[n==1,1,With[{y=primeMS[n]},Binomial[Total[y],Length[y]-1]*(Length[y]-1)!/Product[Count[y,i]!,{i,Max@@y}]]],{n,80}]

Formula

a(n) = falling(m, k - 1)/Product_i (y)_i! where m is the sum of parts (A056239(n)), k is the number of parts (A001222(n)), y is the integer partition with Heinz number n (row n of A296150), (y)_i is the number of i's in y, and falling(x, y) is the falling factorial x(x - 1)(x - 2) ... (x - y + 1) [Kreweras].
Equivalently, a(n) = falling(A056239(n), A001222(n) - 1)/A112624(n).

A194560 G.f.: Sum_{n>=1} G_n(x)^n where G_n(x) = x + x*G_n(x)^n.

Original entry on oeis.org

1, 2, 2, 4, 2, 10, 2, 20, 14, 49, 2, 217, 2, 438, 310, 1580, 2, 6352, 2, 18062, 7824, 58799, 2, 258971, 2532, 742915, 246794, 2729095, 2, 11154954, 2, 35779660, 8414818, 129644809, 242354, 531132915, 2, 1767263211, 300830821, 6593815523, 2, 26289925026, 2, 91708135773
Offset: 1

Views

Author

Paul D. Hanna, Aug 28 2011

Keywords

Comments

Number of Dyck n-paths with all ascents of equal length. - David Scambler, Nov 17 2011
From Gus Wiseman, Feb 15 2019: (Start)
Also the number of uniform (all blocks have the same size) non-crossing set partitions of {1,...,n}. For example, the a(3) = 2 through a(6) = 10 uniform non-crossing set partitions are:
{{123}} {{1234}} {{12345}} {{123456}}
{{1}{2}{3}} {{12}{34}} {{1}{2}{3}{4}{5}} {{123}{456}}
{{14}{23}} {{126}{345}}
{{1}{2}{3}{4}} {{156}{234}}
{{12}{34}{56}}
{{12}{36}{45}}
{{14}{23}{56}}
{{16}{23}{45}}
{{16}{25}{34}}
{{1}{2}{3}{4}{5}{6}}
(End)

Examples

			G.f.: A(x) = x + 2*x^2 + 2*x^3 + 4*x^4 + 2*x^5 + 10*x^6 + 2*x^7 + ...
where
A(x) = G_1(x) + G_2(x)^2 + G_3(x)^3 + G_4(x)^4 + G_5(x)^5 + ...
and G_n(x) = x + x*G_n(x)^n is given by:
G_n(x) = Sum_{k>=0} C(n*k+1,k)/(n*k+1)*x^(n*k+1),
G_n(x)^n = Sum_{k>=1} C(n*k,k)/(n*k-k+1)*x^(n*k);
the first few expansions of G_n(x)^n begin:
G_1(x) = x + x^2 + x^3 + x^4 + x^5 + ...
G_2(x)^2 = x^2 + 2*x^4 + 5*x^6 + 14*x^8 + ... + A000108(n)*x^(2*n) + ...
G_3(x)^3 = x^3 + 3*x^6 + 12*x^9 + 55*x^12 + ... + A001764(n)*x^(3*n) + ...
G_4(x)^4 = x^4 + 4*x^8 + 22*x^12 + 140*x^16 + ... + A002293(n)*x^(4*n) + ...
G_5(x)^5 = x^5 + 5*x^10 + 35*x^15 + 285*x^20 + ... + A002294(n)*x^(5*n) + ...
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n,d]/(n-d+1),{d,Divisors[n]}],{n,20}] (* Gus Wiseman, Feb 15 2019 *)
  • PARI
    {a(n)=if(n<1,0,sumdiv(n,d,binomial(n,d)/(n-d+1)))}
    
  • PARI
    {a(n)=polcoeff(sum(m=1,n,serreverse(x/(1+x^m+x*O(x^n)))^m),n)}

Formula

a(n) = Sum_{d|n} C(n,d)/(n-d+1).
G.f.: Sum_{n>=1} Series_Reversion( x/(1+x^n) )^n.
Showing 1-3 of 3 results.