A194565 Numbers n such that n^2 + n + 41 is composite and n is not a lattice point on the parabolas p1 = x^2 + 40 or p2 = (x^2+x)/2 + 81.
122, 123, 127, 130, 138, 143, 155, 162, 163, 164, 170, 173, 178, 185, 187, 190, 204, 205, 207, 208, 213, 215, 216, 218, 232, 237, 239, 242, 244, 245, 246, 248, 249, 251, 255, 256, 259, 261, 266, 268, 270, 278, 279, 283, 284, 286, 287, 289, 295, 298, 299, 300
Offset: 1
References
- John Stillwell, Elements of Number Theory, Springer, 2003, page 3.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
- Eric W. Weisstein, MathWorld: Prime-Generating Polynomial.
Crossrefs
Programs
-
Maple
AV:=Vector(1000,0): counter:=1: for n from 1 to 1000 do g:=n^2+n+41: if isprime(g)=false then AV[counter]:=n: counter:=counter+1: end if end do: A007634:=convert(AV,set): pv1:=Vector(1000,j->(j-1)^2+40): p1:=convert(pv1,set): A055390:=A007634 minus p1: pv2:=Vector(1000,j->((j-1)^2+(j-1))/2+81): p2:=convert(pv2,set): ThisSet:=A055390 minus p2 minus {0};
-
PARI
is(n)=!isprime(n^2+n+41) && !issquare(n-40) && !issquare(8*n-647) \\ Charles R Greathouse IV, Apr 25 2014
Formula
a(n) ~ n. - Charles R Greathouse IV, Apr 25 2014
Extensions
Fixed subscript in first comment by Matt C. Anderson
Comments