cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A194565 Numbers n such that n^2 + n + 41 is composite and n is not a lattice point on the parabolas p1 = x^2 + 40 or p2 = (x^2+x)/2 + 81.

Original entry on oeis.org

122, 123, 127, 130, 138, 143, 155, 162, 163, 164, 170, 173, 178, 185, 187, 190, 204, 205, 207, 208, 213, 215, 216, 218, 232, 237, 239, 242, 244, 245, 246, 248, 249, 251, 255, 256, 259, 261, 266, 268, 270, 278, 279, 283, 284, 286, 287, 289, 295, 298, 299, 300
Offset: 1

Views

Author

Matt C. Anderson, Aug 28 2011

Keywords

Comments

The parabola curve fit: p1(0)=40; p1(1)=41; p1(2)=44 yields p1(x)=x^2+40. A second fit: p2(0)=81; p2(1)=82; p2(2)=84 yields p2(x)=(x^2+x)/2 + 81.
Substituting n=x^2+40 into g=n^2+n+41 is factorable as: g1=(x^2+x+41)*(x^2-x+41). This shows that all lattice points on p1 produce a composite g.
Similarly, substituting n=(x^2-x)/2 + 81 into g factors as g2=(x^2+163)*(x^2+2*x+164)/4. So all lattice points on p2 produce a composite g.

References

  • John Stillwell, Elements of Number Theory, Springer, 2003, page 3.

Crossrefs

Cf. A007634 (n such that n^2+n+41 is composite).
Cf. A055390 (members of A007634 that are not lattice points of x^2+40).

Programs

  • Maple
    AV:=Vector(1000,0):
    counter:=1:
    for n from 1 to 1000 do
    g:=n^2+n+41:
    if isprime(g)=false then
      AV[counter]:=n:
      counter:=counter+1:
    end if
    end do:
    A007634:=convert(AV,set):
    pv1:=Vector(1000,j->(j-1)^2+40):
    p1:=convert(pv1,set):
    A055390:=A007634 minus p1:
    pv2:=Vector(1000,j->((j-1)^2+(j-1))/2+81):
    p2:=convert(pv2,set):
    ThisSet:=A055390 minus p2 minus {0};
  • PARI
    is(n)=!isprime(n^2+n+41) && !issquare(n-40) && !issquare(8*n-647) \\ Charles R Greathouse IV, Apr 25 2014

Formula

a(n) ~ n. - Charles R Greathouse IV, Apr 25 2014

Extensions

Fixed subscript in first comment by Matt C. Anderson