cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A194567 Decimal expansion of the positive solution to x = 3*(1-exp(-x)).

Original entry on oeis.org

2, 8, 2, 1, 4, 3, 9, 3, 7, 2, 1, 2, 2, 0, 7, 8, 8, 9, 3, 4, 0, 3, 1, 9, 1, 3, 3, 0, 2, 9, 4, 4, 8, 5, 1, 9, 5, 3, 4, 5, 8, 8, 1, 7, 4, 4, 0, 7, 3, 1, 1, 4, 0, 9, 2, 2, 7, 9, 8, 5, 7, 6, 9, 3, 9, 4, 1, 2, 1, 4, 3, 0, 4, 5, 0, 5, 5, 1, 7, 3, 9, 1, 2, 4, 5, 6, 8, 6, 5, 6, 5, 3, 4, 7, 8, 3, 9, 6, 4, 4, 3, 8, 9, 5, 9
Offset: 1

Views

Author

Jean-François Alcover, Aug 29 2011

Keywords

Comments

The positive solution to x=3*(1-exp(-x)) is the dimensionless coefficient corresponding to the maximum brightness in Planck's law of radiation.
It can be symbolically expressed as 3+W(-3/e^3), where W stands for Lambert (a.k.a. "ProductLog") function.

Examples

			2.821439372...
		

Crossrefs

Programs

  • Maple
    evalf(3+LambertW(-3/exp(3)), 130);  # Alois P. Heinz, May 08 2024
  • Mathematica
    RealDigits[ N[x /. ToRules[ Reduce[x > 0 && x == 3*(1 - E^-x), x, Reals]], 100]][[1]]
    RealDigits[3 + ProductLog[-3/E^3], 10, 111][[1]] (* Robert G. Wilson v, Oct 16 2013 *)
    RealDigits[x/.FindRoot[x==3(1-Exp[-x]),{x,2},WorkingPrecision->120]][[1]] (* Harvey P. Dale, Aug 09 2023 *)
  • PARI
    a3=solve(x=0.1,10,x-3*(1-exp(-x))) \\ Use real precision in excess
    
  • PARI
    3+lambertw(-3/exp(3)) \\ Charles R Greathouse IV, Sep 13 2022