cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A194593 Semiprimes s such that phi(s)/2 is prime.

Original entry on oeis.org

9, 10, 14, 22, 46, 94, 118, 166, 214, 334, 358, 454, 526, 694, 718, 766, 934, 958, 1006, 1126, 1174, 1438, 1678, 1726, 1774, 1966, 2038, 2374, 2566, 2614, 2638, 2734, 2878, 2974, 3046, 3238, 3646, 3814, 4054, 4078, 4126, 4198, 4414, 4894, 4918, 5158, 5638, 5758, 5806, 5926, 5998
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Aug 30 2011

Keywords

Comments

For n > 2, A001221(a(n)) = A001221(A000010(a(n))) = 2, and A008683(a(n)) = A008683(A000010(a(n))) = 1. - Torlach Rush, Aug 23 2018
For n > 1, A000010(a(n)) = A077065(n-1). - Torlach Rush, Sep 11 2018

Crossrefs

Programs

  • Magma
    [9] cat [2*p: p in PrimesUpTo(3000) | IsPrime((p - 1) div 2)]; // Vincenzo Librandi, Aug 25 2018
  • Maple
    9, 10, op(select(s -> isprime(s/2) and isprime((s-2)/4), [seq(s,s=6..10000,8)])); # Robert Israel, Apr 06 2016
  • Mathematica
    Select[Range@ 6000, PrimeOmega@ # == 2 && PrimeQ[EulerPhi[#]/2] &] (* Michael De Vlieger, Apr 06 2016 *)
  • PARI
    isok(n) = (bigomega(n)== 2) && isprime(eulerphi(n)/2); \\ Michel Marcus, Apr 06 2016
    

Formula

a(n) = 2*A005385(n-1), n>1.
a(n) = 4*A005384(n-1) + 2, n > 1. - Michel Marcus, Apr 02 2020

Extensions

Corrected by R. J. Mathar, Oct 13 2011