A194595 Triangle by rows T(n,k), showing the number of meanders with length (n+1)*3 and containing (k+1)*3 L's and (n-k)*3 R's, where L's and R's denote arcs of equal length and a central angle of 120 degrees which are positively or negatively oriented.
1, 3, 1, 7, 14, 1, 13, 81, 39, 1, 21, 304, 456, 84, 1, 31, 875, 3000, 1750, 155, 1, 43, 2106, 13875, 18500, 5265, 258, 1, 57, 4459, 50421, 128625, 84035, 13377, 399, 1, 73, 8576, 153664, 669536, 836920, 307328, 30016, 584, 1, 91, 15309, 409536, 2815344, 6001128, 4223016, 955584, 61236, 819, 1
Offset: 0
Examples
For n = 4 and k = 2, T(3,4,2) = 456. Recursive example: T(1,4,0) = 1 T(1,4,1) = 4 T(1,4,2) = 6 T(1,4,3) = 4 T(1,4,4) = 1 T(2,4,0) = 5 T(2,4,1) = 40 T(2,4,2) = 60 T(2,4,3) = 20 T(2,4,4) = 1 T(3,4,0) = T(1,4,0)^3 + T(1,4,0)*T(2,4,4-1-0) = 1^3 + 1*20 = 21 T(3,4,1) = T(1,4,1)^3 + T(1,4,1)*T(2,4,4-1-1) = 4^3 + 4*60 = 304 T(3,4,2) = T(1,4,2)^3 + T(1,4,2)*T(2,4,4-1-2) = 6^3 + 6*40 = 456 T(3,4,3) = T(1,4,3)^3 + T(1,4,3)*T(2,4,4-1-3) = 4^3 + 4*5 = 84 T(3,4,4) = 1. Example for closed formula: T(4,2) = (C(4,2))^3 + C(4,2) * C(4,3) * C(5,3) = 6^3 + 6 * 4 * 10 = 456. Some examples of list S and allocated values of dir if n = 4 and k = 2: Length(S) = (4+1)*3 = 15 and S contains (2+1)*3 = 9 L's. S: L,L,L,L,L,L,L,L,L,R,R,R,R,R,R dir: 1,2,0,1,2,0,1,2,0,0,2,1,0,2,1 S: L,L,R,L,L,L,L,R,R,L,R,R,L,R,L dir: 1,2,2,2,0,1,2,2,1,1,1,0,0,0,0 S: L,R,R,R,L,L,L,L,R,R,L,L,L,R,L dir: 1,1,0,2,2,0,1,2,2,1,1,2,0,0,0 Each value of dir occurs 15/3 = 5 times.
Links
- Susanne Wienand, Table of n, a(n) for n = 0..2015
- Peter Luschny, Meanders and walks on the circle.
- Susanne Wienand, Animation of a meander.
- Susanne Wienand, Example of a meander.
Crossrefs
Programs
-
Maple
A194595 := (n,k)->binomial(n,k)^3*(k^2+k+1+n^2+n-k*n)/((k+1)^2); seq(print(seq(A194595(n,k),k=0..n)),n=0..7); # Peter Luschny, Oct 14 2011
-
Mathematica
T[n_, k_] := Binomial[n, k]^3*(k^2 + k + 1 + n^2 + n - k*n)/((k + 1)^2); Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 30 2018, after Peter Luschny *)
-
PARI
A194595(n,k) = {if(n == 1+2*k,3,(1+k)*(1-((n-k)/(1+k))^3)/(1+2*k-n))*binomial(n,k)^3} \\ Peter Luschny, Nov 24 2011
Formula
Recursive formula (conjectured):
T(n,k) = T(3,n,k) = T(1,n,k)^3 + T(1,n,k)*T(2,n,n-1-k), 0 <= k < n
T(3,n,n) = 1, k = n
T(2,n,k) = T(1,n,k)^2 + T(1,n,k) * T(1,n,n-1-k), 0 <= k < n
T(2,n,n) = 1, k = n
T(2,n,k) = A103371,
T(1,n,k) = A007318 (Pascal's Triangle).
Closed formula (conjectured): T(n,k) = (C(n,k))^3 + C(n,k) * C(n,k+1) * C(n+1,k+1). - Susanne Wienand
Let S(n,k) = binomial(2*n,n)^(k+1)*((n+1)^(k+1)-n^(k+1))/(n+1)^k. Then T(2*n,n) = S(n,2). - Peter Luschny, Oct 20 2011
T(n,k) = A073254(n+1,k+1)C(n,k)^3/(k+1)^2. - Peter Luschny, Oct 29 2011
T(n,k) = h(n,k)*binomial(n,k)^3, where h(n,k) = (1+k)*(1-((n-k)/(1+k))^3)/(1+2*k-n) if 1+2*k-n <> 0 else h(n,k) = 3. - Peter Luschny, Nov 24 2011
Comments