A194603 Smallest prime either of the form n*2^k - 1 or n*2^k + 1, k >= 0, or 0 if no such prime exists.
2, 3, 2, 3, 11, 5, 13, 7, 17, 11, 23, 11, 53, 13, 29, 17, 67, 17, 37, 19, 41, 23, 47, 23, 101, 53, 53, 29, 59, 29, 61, 31, 67, 67, 71, 37, 73, 37, 79, 41, 83, 41, 173, 43, 89, 47, 751, 47, 97, 101, 101, 53, 107, 53, 109, 113, 113, 59, 1889, 59, 487, 61, 127
Offset: 1
Keywords
Examples
For n=7, 7*2^0-1 and 7*2^0+1 are composite, but 7*2^1-1=13 is prime, so a(7)=13.
Links
- Arkadiusz Wesolowski, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Mathematica
Table[k = 0; While[! PrimeQ[a = n*2^k - 1] && ! PrimeQ[a = n*2^k + 1], k++]; a, {n, 100}] (* Arkadiusz Wesolowski, Sep 04 2011 *) n2k[n_]:=Module[{k=0},While[NoneTrue[n*2^k+{1,-1},PrimeQ],k++];SelectFirst[ n*2^k+{-1,1},PrimeQ]]; Array[n2k,70] (* The program uses the NoneTrue and SelectFirst functions from Mathematica version 10 *) (* Harvey P. Dale, Jun 03 2015 *)
Comments