A194623 Decimal expansion of y with 0 < x < y and x^y = y^x = 17.
4, 8, 9, 5, 3, 6, 7, 9, 5, 5, 5, 4, 6, 1, 1, 3, 4, 7, 1, 9, 6, 7, 1, 9, 3, 3, 8, 7, 2, 2, 9, 8, 3, 5, 8, 4, 9, 4, 7, 2, 7, 3, 1, 9, 5, 2, 8, 0, 9, 3, 7, 2, 4, 4, 3, 6, 3, 0, 8, 4, 6, 6, 4, 9, 2, 9, 5, 5, 4, 1, 2, 1, 0, 4, 9, 5, 4, 0, 9, 2, 9, 3, 6, 5, 3, 4, 1, 1, 4, 0, 8, 0, 1, 2, 1, 7, 9, 2, 6, 1
Offset: 1
Examples
y=4.89536795554611347196719338722983584947273195280937244363084664929554121...
Links
- J. Sondow and D. Marques, Algebraic and transcendental solutions of some exponential equations, Annales Mathematicae et Informaticae, 37 (2010), 151-164.
Crossrefs
Programs
-
Mathematica
x[t_] := (1 + 1/t)^t; y[t_] := (1 + 1/t)^(t + 1); t = t/. FindRoot[x[t]^y[t] == 17, {t, 1}, WorkingPrecision -> 120]; RealDigits[y[t], 10, 100] // First
Comments