cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Rick Novile

Rick Novile's wiki page.

Rick Novile has authored 1 sequences.

A329458 Decimal expansion of x such that x^x * log(x) - x^x + 1 = 0, x > 1.

Original entry on oeis.org

2, 4, 1, 1, 7, 3, 9, 9, 3, 0, 5, 6, 0, 5, 5, 9, 2, 8, 1, 1, 4, 5, 1, 8, 9, 1, 9, 8, 0, 2, 4, 4, 6, 4, 1, 3, 2, 6, 1, 1, 7, 7, 3, 5, 6, 0, 3, 4, 0, 4, 6, 3, 7, 0, 1, 5, 3, 5, 1, 5, 4, 6, 7, 1, 3, 8, 6, 0, 7, 0, 7, 9, 9, 6, 1, 1, 9, 9, 0, 2, 9
Offset: 1

Author

Rick Novile, Nov 16 2019

Keywords

Comments

Equivalent to the coordinates of the self-intersection point of the graph y^x - x^y = y - x, where x, y > 1.

Examples

			x = 2.41173993056055928114518919802446413261177356034046370153515467138607...
		

Crossrefs

Programs

  • Mathematica
    FindRoot[x^x Log[x] - x^x + 1 == 0, {x, 2.40737, 2.41474}, WorkingPrecision -> 1000]
  • PARI
    solve(x=2, 3, x^x * log(x) - x^x + 1) \\ Michel Marcus, Nov 16 2019
    
  • PARI
    solve(x=2, 3, x - exp(1-1/x^x)) \\ Michel Marcus, Jul 14 2020

Formula

x^x * log(x) - x^x + 1 = 0; x != 1.
y^x - x^y = y - x; y = x; x != 1.
x = exp(1-x^(-x)); x > 1. - Rick Novile, Jul 14 2020