A194631 Arises in enumerating Huffman codes, compact trees, and sums of unit fractions.
1, 1, 1, 2, 4, 8, 16, 32, 64, 128, 255, 509, 1017, 2032, 4060, 8112, 16208, 32384, 64704, 129280, 258304, 516098, 1031177, 2060318, 4116568, 8225008, 16433776, 32835104, 65605376, 131081216, 261903618, 523290119, 1045547025, 2089029664, 4173934632, 8339628016
Offset: 1
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
- Christian Elsholtz, Clemens Heuberger, Helmut Prodinger, The number of Huffman codes, compact trees, and sums of unit fractions, arXiv:1108.5964v1 [math.CO], Aug 30, 2011. Also IEEE Trans. Information Theory, Vol. 59, No. 2, 2013 pp. 1065-1075.
Programs
-
Mathematica
b[n_, r_, k_] := b[n, r, k] = If[n < r, 0, If[r == 0, If[n == 0, 1, 0], Sum[b[n-j, k*(r-j), k], {j, 0, Min[n, r]}]]]; a[n_] := b[7n-6, 1, 8]; Array[a, 40] (* Jean-François Alcover, Jul 21 2018, after Alois P. Heinz *)
-
PARI
/* see A002572, set t=8 */
Formula
a(n) = A294775(n-1,7). - Alois P. Heinz, Nov 08 2017
Extensions
Terms beyond a(20)=129280 added by Joerg Arndt, Dec 18 2012
Comments