A194718 Number of n-ary words beginning with the first character of the alphabet, that can be built by inserting six doublets into the initially empty word.
0, 1, 462, 7941, 48838, 185193, 530526, 1265677, 2654646, 5060433, 8960878, 14964501, 23826342, 36463801, 53972478, 77642013, 108971926, 149687457, 201755406, 267399973, 349118598, 449697801, 572229022, 720124461, 897132918, 1107355633, 1355262126, 1645706037
Offset: 0
Examples
a(1) = 1: aaaaaaaaaaaa (with 1-ary alphabet {a}).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (6, -15, 20, -15, 6, -1).
Crossrefs
Row n=6 of A183134.
Programs
-
Maple
a:= n-> `if`(n=0, 0, (x-> 1+(10+(44+(110+(165+132*x)*x)*x)*x)*x)(n-1)): seq(a(n), n=0..30);
-
Mathematica
LinearRecurrence[{6,-15,20,-15,6,-1},{0,1,462,7941,48838,185193,530526},30] (* Harvey P. Dale, Oct 23 2015 *)
Formula
G.f.: x*(1+456*x+5184*x^2+8102*x^3+2055*x^4+42*x^5) / (x-1)^6.
a(0) = 0, a(n) = 1+(10+(44+(110+(165+132*(n-1))*(n-1))*(n-1))*(n-1)) * (n-1) for n>0.