cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A194726 Number of 6-ary words either empty or beginning with the first character of the alphabet, that can be built by inserting n doublets into the initially empty word.

Original entry on oeis.org

1, 1, 11, 146, 2131, 32966, 530526, 8786436, 148733571, 2561439806, 44731364266, 790211926076, 14095578557486, 253519929631996, 4592415708939356, 83709533881191816, 1534227271236577251, 28256420350942562286, 522675506718404898546, 9706083027629177910156
Offset: 0

Views

Author

Alois P. Heinz, Sep 02 2011

Keywords

Examples

			a(2) = 11: aaaa, aabb, aacc, aadd, aaee, aaff, abba, acca, adda, aeea, affa (with 6-ary alphabet {a,b,c,d,e,f}).
		

Crossrefs

Column k=6 of A183134.

Programs

  • Maple
    a:= n-> `if`(n=0, 1, add(binomial(2*n, j) *(n-j) *5^j, j=0..n-1) /n):
    seq(a(n), n=0..25);

Formula

G.f.: 5/6 + 5/(3*(4+6*sqrt(1-20*x))).
a(0) = 1, a(n) = 1/n * Sum_{j=0..n-1} C(2*n,j)*(n-j)*5^j for n>0.
a(n) ~ 5*20^n/(16*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Aug 13 2013
D-finite with recurrence: n*a(n) = 2*(28*n-15)*a(n-1) - 360*(2*n-3)*a(n-2). - Vaclav Kotesovec, Aug 13 2013
From Karol A. Penson, Jul 12 2015: (Start)
Special values of the hypergeometric function 2F1, in Maple notation:
a(n+1) = (25/9)*20^n*GAMMA(n+3/2)*hypergeom([1, n+3/2], [n+3],5/9)/(sqrt(Pi)*(n+2)!), n=0,1,... .
Integral representation as the n-th moment of a positive function W(x) = sqrt((20-x)*x)*(1/(36-x))/(2*Pi) on (0,20): a(n+1) = int(x^n*W(x),x=0..20), n=0,1,... . This representation is unique as W(x) is the solution of the Hausdorff moment problem. (End)