A194900 Rectangular array, by antidiagonals: row n gives the positions of n in the fractal sequence A194899; an interspersion.
1, 2, 3, 5, 6, 4, 8, 10, 7, 9, 13, 15, 12, 14, 11, 18, 21, 17, 20, 16, 19, 25, 28, 24, 27, 23, 26, 22, 32, 36, 31, 35, 30, 34, 29, 33, 41, 45, 40, 44, 39, 43, 38, 42, 37, 50, 55, 49, 54, 48, 53, 47, 52, 46, 51, 61, 66, 60, 65, 59, 64, 58, 63, 57, 62, 56, 72, 78, 71
Offset: 1
Examples
Northwest corner: 1...2...5...8...13..18 3...6...10..15..21..28 4...7...12..17..24..31 9...14..20..27..35..44 11..16..23..30..39..48
Programs
-
Mathematica
r = Sqrt[12]; t[n_] := Table[FractionalPart[k*r], {k, 1, n}]; f = Flatten[Table[Flatten[(Position[t[n], #1] &) /@ Sort[t[n], Less]], {n, 1, 20}]] (* A194899 *) TableForm[Table[Flatten[(Position[t[n], #1] &) /@ Sort[t[n], Less]], {n, 1, 15}]] row[n_] := Position[f, n]; u = TableForm[Table[row[n], {n, 1, 20}]] g[n_, k_] := Part[row[n], k]; p = Flatten[Table[g[k, n - k + 1], {n, 1, 15}, {k, 1, n}]] (* A194900 *) q[n_] := Position[p, n]; Flatten[Table[q[n], {n, 1, 90}]] (* A194901 *)
Comments