cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A194924 The number of set partitions of {1,2,...,n} into exactly two subsets A,B such that the greatest common divisor of |A| and |B| = 1.

Original entry on oeis.org

1, 3, 4, 15, 6, 63, 64, 171, 130, 1023, 804, 4095, 2380, 7920, 16384, 65535, 40410, 262143, 246640, 582771, 695860, 4194303, 2884776, 13455325, 11576916, 44739243, 65924824, 268435455, 176422980, 1073741823, 1073741824, 2669774811, 3128164186, 11421338075
Offset: 2

Views

Author

Geoffrey Critzer, Oct 12 2011

Keywords

Comments

a(p)=2^(p-1)-1 = S2(p,2) where p is a prime and S2(n,k) is the Stirling number of the second kind.
a(n) is the coefficient of x^n/n! in the Taylor series expansion of B(A(x)) where A(x)= Sum_{over positive integers relatively prime to n}x^n/n! and B(x)=x^2/2!.

Crossrefs

Column k=2 of A280880.

Programs

  • Maple
    a:= n-> `if`(n=2, 1, add(`if`(igcd(k, n-k)=1,
                         binomial(n, k), 0), k=1..iquo(n, 2))):
    seq(a(n), n=2..50); # Alois P. Heinz, Nov 02 2011
  • Mathematica
    f[list_]:=x^First[list]/First[list]!+x^Last[list]/Last[list]!;
    Prepend[Table[a=Total[Map[f,Select[IntegerPartitions[n,2],Apply[GCD,#]==1&]]];Last[Range[0,n]! CoefficientList[Series[a^2/2!,{x,0,n}],x]],{n,3,30}],1]
    (* Second program: *)
    a[n_] := If[n == 2, 1, Sum[If[GCD[k, n-k] == 1, Binomial[n, k], 0], {k, 1, Quotient[n, 2]}]];
    a /@ Range[2, 50] (* Jean-François Alcover, Jun 09 2021, after Alois P. Heinz *)