cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A336449 Values z of primitive solutions (x, y, z) to the Diophantine equation x^3 + y^3 + 2*z^3 = 2*4^6.

Original entry on oeis.org

1, 9, 16, 25, 49, 81, 121, 169, 225, 289, -356, 361, 441, 529, 625, 729, 841, -948, 961, 1045, 1089, 1225, 1369, 1521, 1681, -1715, 1849, 1876, 2025, 2209, 2401, 2601, 2809, 3025, 3249, 3481, -3587, 3721, 3969, 4225, 4489, 4761, 5041, 5329, 5625, 5769, 5929
Offset: 1

Views

Author

XU Pingya, Aug 08 2020

Keywords

Comments

Terms are arranged in order of increasing absolute value (if equal, the negative number comes first).
Let x = a^(2*k) - (a^k)*t - t^2, y = a^(2*k) + (a^k)*t - t^2, z = t^2; then x^3 + y^3 + 2*z^3 = 2*a^(6*k). When a = 4, k = 1, t = 2*n + 1; (x, y, z) are primitive solutions of equation. Thus, terms of A016754 are terms of the sequence.

Examples

			(-15)^3 + (-27)^3 + 2*25^3 = 11^3 + (-29)^3 + 2*25^3 = 8192, 25 is a term.
(-65)^3 + (449)^3 + 2*(-356)^3 = 8192, -356 is a term.
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, D5.

Crossrefs

Programs

  • Mathematica
    Clear[t]
    t = {};
    Do[y = (8192 - x^3 - 2z^3)^(1/3) /. (-1)^(1/3) -> -1;
    If[Abs@x <= Abs@y && IntegerQ[y] && GCD[x, y, z] == 1, AppendTo[t, z]], {z, -5929, 5929}, {x, -Round[(Abs[8192 - 2z^3]/3)^(1/2)], Round[(Abs[8192 - 2z^3]/3)^(1/2)]}]
    u = Union@t;
    v = Table[(-1)^n*Floor[(n + 1)/2], {n, 0, 12000}];
    Select[v, MemberQ[u, #] &]

A336450 Values z of primitive solutions (x, y, z) to the Diophantine equation x^3 + y^3 + 2*z^3 = 2*5^6.

Original entry on oeis.org

1, -3, 4, 9, 16, 25, 36, 49, -56, 64, 81, 88, -104, 121, 144, -167, 169, 177, 196, -203, -243, -255, 256, 277, 289, 324, 361, -363, 373, -395, -411, 441, 484, 529, 576, 676, 709, -719, 729, 784, 841, 961, 1017, 1024, -1028, 1080, 1089, -1091, 1156, 1296, 1369
Offset: 1

Views

Author

XU Pingya, Aug 08 2020

Keywords

Comments

Terms are arranged in order of increasing absolute value (if equal, the negative number comes first).
Let x = a^(2*m) - (a^m)*t - t^2, y = a^(2*m) + (a^m)*t - t^2, z = t^2; then x^3 + y^3 + 2*z^3 = 2*a^(6*m). When a = 5, m = 1, t = 5*n + k(k = {1, 2, 3, 4}); (x, y, z) are primitive solutions of equation. Thus, A047201(n)^2 are terms of the sequence.

Examples

			(-20)^3 + 34^3 + 2*(-3)^3 = 31250, -3 is a term.
(-11)^3 + 29^3 + 2*16^3 = 15^3 + 27^3 + 2*16^3 = 31250, 16 is a term.
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, D5.

Crossrefs

Programs

  • Mathematica
    Clear[t]
    t = {};
    Do[y = (31250 - x^3 - 2z^3)^(1/3) /. (-1)^(1/3) -> -1;
    If[IntegerQ[y] && GCD[x, y, z] == 1, AppendTo[t, z]], {z, -1369, 1369}, {x, -Round[(Abs[31250 - 2z^3]/3)^(1/2)], Round[(Abs[31250 - 2z^3]/3)^(1/2)]}]
    u = Union@t;
    v = Table[(-1)^n*Floor[(n + 1)/2], {n, 0, 2739}];
    Select[v, MemberQ[u, #] &]

A336166 Values z of primitive solutions (x, y, z) to the Diophantine equation x^3 + y^3 + 2*z^3 = 2.

Original entry on oeis.org

0, 1, -3, 4, 9, -12, 16, 25, -27, -35, 36, 37, -48, 49, -59, 64, -75, 81, 100, -108, 121, 144, -147, -159, 169, 172, -192, 196, 225, -227, -243, -255, 256, 261, -287, 289, -300, -311, 324, -335, 361, -363, 373, 400, -432, 441, 484, -507, 529, 568, 576, -588
Offset: 1

Views

Author

XU Pingya, Jul 10 2020

Keywords

Comments

Terms are arranged in order of increasing absolute value (if equal, the negative number comes first).
Segre shows that 1-(9/2)*A000578(2n), (-3)*A000290(n), and A016754(n) are terms of the sequence.

Examples

			(-5)^3 + (-11)^3 + 2 * 9^3 = 2, 9 is a term.
(25)^3 + (-23)^3 + 2 * (-12)^3 = 2, -12 is a term.
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, D5.

Crossrefs

Programs

  • Mathematica
    t1 = Union[Plus@@@Tuples[Range[-11643, 11643]^3, 2]];
    t2 = Table[2 - 2z^3, {z, -588, 588}];
    t = Select[t1, MemberQ[t2, #] &];
    u = ((2 - t)/2)^(1/3) /. (-1)^(1/3) -> (-1);
    v = Table[(-1)^n*Floor[(n + 1)/2], {n, 0, 1176}];
    Select[v, MemberQ[u, #] &]

A336226 Values z of primitive solutions (x, y, z) to the Diophantine equation x^3 + y^3 + 2*z^3 = 1458.

Original entry on oeis.org

1, -3, 4, 9, -10, -12, 16, 21, 25, 37, -47, -48, 49, 64, -75, -87, 88, 100, 105, 121, 134, -147, 169, 172, -192, 196, -241, -243, 256, 289, -300, 361, -363, 400, 443, 484, -507, 529, 541, -588, 625, 676, -699, 732, -759, -768, 777, 784, 841, -867, 897, 961
Offset: 1

Views

Author

XU Pingya, Jul 17 2020

Keywords

Comments

Terms are arranged in order of increasing absolute value (if equal, the negative number comes first).
(11 + 3*n - 9*n^2)^3 + (11 + 3*(n + 1) - 9*(n + 1)^2)^3 + 2*(3*n + 1)^6 = 1458, the numbers of the form (3*n + 1)^2 are terms of the sequence.
(11 - 3*n - 9*n^2)^3 + (11 - 3*(n + 1) - 9*(n + 1)^2)^3 + 2*(3*n + 2)^6 = 1458, the numbers of the form (3*n + 2)^2 are also terms of the sequence.
Thus, A001651(n)^2 are terms of the sequence. There is an infinity of nontrivial solutions to the equation.

Examples

			5^3 + 11^3 + 2 * 1^3 = 1458, 1 is a term.
(-1)^3 + (11)^3 + 2 * (4)^3 = 1458, 4 is a term.
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, D5.

Crossrefs

Programs

  • Mathematica
    Clear[t]
    t = {};
    Do[y = (1458 - x^3 - 2 z^3)^(1/3) /. (-1)^(1/3) -> -1; If[IntegerQ[y] && GCD[x, y, z] == 1, AppendTo[t, z]], {z, -980, 980}, {x, -25319, 25319}]
    u = Union@t;
    v = Table[(-1)^n*Floor[(n + 1)/2], {n, 0, 2000}];
    Select[v, MemberQ[u, #] &]

A336230 Values z of primitive solutions (x, y, z) to the Diophantine equation x^3 + y^3 + 2*z^3 = 128.

Original entry on oeis.org

1, 4, 9, 25, 49, 81, 121, 169, -224, 225, 289, 361, -383, 441, 504, 529, 625, 729, 841, 961, 1089, 1225, 1369, 1521, 1681, 1849, 2025, 2209, -2219, 2401, 2601, -2687, 2809, 3025, 3249, 3481, -3680, 3721, 3969, 4225, -4283, 4417, 4489, 4761, 5041, 5329, -5459
Offset: 1

Views

Author

XU Pingya, Jul 12 2020

Keywords

Comments

Terms are arranged in order of increasing absolute value (if equal, the negative number comes first).
(5 - 4*n^2)^3 + (5 - 4*(n + 1)^2)^3 + 2*(2*n + 1)^6 = 128. A000290(2*n + 1) are terms of the sequence, i.e., there is an infinity of nontrivial solutions to the equation.

Examples

			1^3 + 5^3 + 2 * 1^3 = 128, 1 is a term.
(-11)^3 + (-31)^3 + 2 * (25)^3 = 128, 25 is a term.
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, D5.

Crossrefs

Programs

  • Mathematica
    Clear[t]
    t = {};
    Do[y = (128 - x^3 - 2 z^3)^(1/3) /. (-1)^(1/3) -> -1; If[IntegerQ[y] && GCD[x, y, z] == 1, AppendTo[t, z]], {z, -4761, 4761}, {x, -11550, 11550}]
    u = Union@t;
    v = Table[(-1)^n*Floor[(n + 1)/2], {n, 0, 9523}];
    Select[v, MemberQ[u, #] &]

A338239 Values z of primitive solutions (x, y, z) to the Diophantine equation 2*x^3 + 2*y^3 + z^3 = 1.

Original entry on oeis.org

-1, 1, -5, 11, -17, 19, 29, -31, -37, -61, 79, -85, 113, -127, -143, 145, -209, 305, 361, -485, 487, 545, 647, 667, 811, -1091, -1151, 1153, -1235, -1429, -1525, 1597, 1699, -1793, -2249, 2251, -2533, 2627, -2677, 2977, -2981, 3089, -3295, 3739, -3887, 3889
Offset: 1

Views

Author

XU Pingya, Oct 18 2020

Keywords

Comments

Terms are arranged in order of increasing absolute value (if equal, the negative number comes first).
When x = (3*c)*t - (9*a)*t^4, y = (9*a)*t^4, z = c - (9*a)*t^3; a*x^3 + a*y^3 + c*z^3 = c^4. Let a = 2, c = 1, then 1 - 18*n^3 and 1 + 18*n^3 are terms of the sequence. Also, -A337928 and A337929 are subsequences.

Examples

			2*25^3 + 2*(-64)^3 + 79^3 = 2*164^3 + 2*(-167)^3 + 79^3 = 1, 79 is a term.
		

Crossrefs

Programs

  • Mathematica
    Clear[t]
    t = {};
    Do[y = ((1 - 2x^3 - z^3)/2)^(1/3) /. (-1)^(1/3) -> -1;
     If[IntegerQ[y] && GCD[x, y, z] == 1, AppendTo[t, z]], {z, -4000, 4000}, {x, -Round[(Abs[1 + z^3]/6)^(1/2)], Round[(Abs[1 + z^3]/6)^(1/2)]}]
    u = Union@t;
    v = Table[(-1)^n*Floor[(n + 1)/2], {n, 0, 8001}];
    Select[v, MemberQ[u, #] &]
Showing 1-6 of 6 results.