cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A195012 Sum of positive cranks minus the sum of positive ranks of all partitions of n.

Original entry on oeis.org

1, 1, 1, 2, 2, 4, 5, 7, 10, 13, 17, 24, 31, 40, 53, 69, 88, 113, 144, 183, 231, 290, 362, 453, 563, 696, 859, 1058, 1296, 1587, 1935, 2354, 2856, 3458, 4175, 5033, 6051, 7259, 8692, 10390, 12391, 14756, 17537, 20808, 24648, 29151, 34417, 40581, 47773, 56158
Offset: 1

Views

Author

Omar E. Pol, Jan 10 2012

Keywords

Comments

It appears this is also the column 0 of triangle A195011 without the first one (see the Andrews-Garvan-Liang paper, page 16).
Is this also the ospt(n) function mentioned in the Andrews-Chan-Kim paper? Is A115995(n) the first crank momment? Is A209616(n) the first rank moment? - Omar E. Pol, Apr 07 2012
From Jeremy Lovejoy, Oct 14 2022: (Start)
a(n) is also the number of rank 0 strongly unimodal sequences of size n. A strongly unimodal sequence is a sequence of positive integers which are strictly increasing up to a point (the peak) and then strictly decreasing thereafter. The size is the sum of all of the parts and the rank is the number of parts to the left of the peak minus the number of parts to the right of the peak.
For example, there are 10 strongly unimodal sequences of size 6: (6), (1,5), (5,1), (2,4), (4,2), (1,4,1), (3,2,1), (1,2,3), (1,3,2), and (2,3,1). The sequences (6), (1,4,1), (1,3,2), and (2,3,1) have rank 0, and so a(6) = 4. (End)

Examples

			For n = 6 we have:
------------------------------------------------
Partitions
of 6                  Crank             Rank
------------------------------------------------
6                           6        6 - 1 =  5
3+3                         3        3 - 2 =  1
4+2                         4        4 - 2 =  2
2+2+2                       2        2 - 3 = -1
5+1                1 - 1 =  0        5 - 2 =  3
3+2+1              2 - 1 =  1        3 - 3 =  0
4+1+1              1 - 2 = -1        4 - 3 =  1
2+2+1+1            0 - 2 = -2        2 - 4 = -2
3+1+1+1            0 - 3 = -3        3 - 4 = -1
2+1+1+1+1          0 - 4 = -4        2 - 5 = -3
1+1+1+1+1+1        0 - 6 = -6        1 - 6 = -5
------------------------------------------------
The sum of positive cranks is 6+3+4+2+1 = 16 and the sum of positive ranks is 5+1+2+3+1 = 12 therefore a(6) = 16 - 12 = 4.
		

Crossrefs

Programs

  • Maple
    # Based on Theorem 1 of Andrews-Chan-Kim:
    M:=101;
    qinf:=mul(1-q^i,i=1..M);
    qinf:=series(qinf,q,M);
    C1:=add((-1)^(n+1)*q^(n*(n+1)/2)/(1-q^n),n=1..M);
    C1:=series(C1/qinf,q,M);
    R1:=add((-1)^(n+1)*q^(n*(3*n+1)/2)/(1-q^n),n=1..M);
    R1:=series(R1/qinf,q,M);
    series(C1-R1,q,M);
    seriestolist(%); # N. J. A. Sloane, Sep 04 2012
  • Mathematica
    M = 101;
    qinf = Product[1-q^i, {i, 1, M}];
    qinf = Series[qinf, {q, 0, M}];
    C1 = Sum[(-1)^(n+1) q^(n(n+1)/2)/(1-q^n), {n, 1, M}];
    C1 = Series[C1/qinf, {q, 0, M}];
    R1 = Sum[(-1)^(n+1) q^(n(3n+1)/2)/(1-q^n), {n, 1, M}];
    R1 = Series[R1/qinf, {q, 0, M}];
    CoefficientList[Series[C1-R1, {q, 0, M}], q] // Rest (* Jean-François Alcover, Aug 18 2018, translated from Maple *)

Formula

a(n) = A115995(n) - A209616(n).
From Jeremy Lovejoy, Oct 14 2022: (Start)
G.f.: (1/Product_{n>=1}(1-x^n))*Sum_{n>=1} x^(n*(n+1)/2)*(-1)^(n-1)*(1-x^(n^2))/(1-x^n).
G.f.: (1/Product_{n>=1}(1-x^n))*Sum_{n,r>=0} (-1)^(n+r)*x^(n*(3*n+5)/2+2*n*r+r*(r+3)/2). (End)
a(n) ~ exp(Pi*sqrt(2*n/3)) / (16*sqrt(3)*n). - Vaclav Kotesovec, Jul 06 2025

Extensions

New name, example and more terms from Omar E. Pol, Apr 06 2012
More terms a(44)-a(50) from Alois P. Heinz, Apr 08 2012