A195012 Sum of positive cranks minus the sum of positive ranks of all partitions of n.
1, 1, 1, 2, 2, 4, 5, 7, 10, 13, 17, 24, 31, 40, 53, 69, 88, 113, 144, 183, 231, 290, 362, 453, 563, 696, 859, 1058, 1296, 1587, 1935, 2354, 2856, 3458, 4175, 5033, 6051, 7259, 8692, 10390, 12391, 14756, 17537, 20808, 24648, 29151, 34417, 40581, 47773, 56158
Offset: 1
Keywords
Examples
For n = 6 we have: ------------------------------------------------ Partitions of 6 Crank Rank ------------------------------------------------ 6 6 6 - 1 = 5 3+3 3 3 - 2 = 1 4+2 4 4 - 2 = 2 2+2+2 2 2 - 3 = -1 5+1 1 - 1 = 0 5 - 2 = 3 3+2+1 2 - 1 = 1 3 - 3 = 0 4+1+1 1 - 2 = -1 4 - 3 = 1 2+2+1+1 0 - 2 = -2 2 - 4 = -2 3+1+1+1 0 - 3 = -3 3 - 4 = -1 2+1+1+1+1 0 - 4 = -4 2 - 5 = -3 1+1+1+1+1+1 0 - 6 = -6 1 - 6 = -5 ------------------------------------------------ The sum of positive cranks is 6+3+4+2+1 = 16 and the sum of positive ranks is 5+1+2+3+1 = 12 therefore a(6) = 16 - 12 = 4.
Links
- G. E. Andrews, S. H. G. Chan, and B. Kim, The odd moments of ranks and cranks (This is the function C_1 - R_1 of that paper), Journal of Combinatorial Theory, Series A, Volume 120, Issue 1, January 2013, Pages 77-91.
- G. E. Andrews, F. G. Garvan, and J. Liang, Combinatorial interpretation of congruences for the spt-function, The Ramanujan Journal, December 2012, Volume 29, Issue 1-3, pp 321-338.
- A. O. L. Atkin and F. G. Garvan, Relations between the ranks and cranks of partitions, arXiv:math/0208050 [math.NT], 2002.
- K. Bringmann, C. Jennings-Shaffer, K. Mahlburg, and R. Rhoades, Peak positions of strongly unimodal sequences, Trans. Amer. Math. Soc. 372 (2019), 7087-7109.
- Frank Garvan, Dyson's rank function and Andrews's SPT-function [Broken link?]
- K. Hikami and J. Lovejoy, Torus knots and quantum modular forms, Res. Math. Sci. 2, Article 2 (2015).
Programs
-
Maple
# Based on Theorem 1 of Andrews-Chan-Kim: M:=101; qinf:=mul(1-q^i,i=1..M); qinf:=series(qinf,q,M); C1:=add((-1)^(n+1)*q^(n*(n+1)/2)/(1-q^n),n=1..M); C1:=series(C1/qinf,q,M); R1:=add((-1)^(n+1)*q^(n*(3*n+1)/2)/(1-q^n),n=1..M); R1:=series(R1/qinf,q,M); series(C1-R1,q,M); seriestolist(%); # N. J. A. Sloane, Sep 04 2012
-
Mathematica
M = 101; qinf = Product[1-q^i, {i, 1, M}]; qinf = Series[qinf, {q, 0, M}]; C1 = Sum[(-1)^(n+1) q^(n(n+1)/2)/(1-q^n), {n, 1, M}]; C1 = Series[C1/qinf, {q, 0, M}]; R1 = Sum[(-1)^(n+1) q^(n(3n+1)/2)/(1-q^n), {n, 1, M}]; R1 = Series[R1/qinf, {q, 0, M}]; CoefficientList[Series[C1-R1, {q, 0, M}], q] // Rest (* Jean-François Alcover, Aug 18 2018, translated from Maple *)
Formula
From Jeremy Lovejoy, Oct 14 2022: (Start)
G.f.: (1/Product_{n>=1}(1-x^n))*Sum_{n>=1} x^(n*(n+1)/2)*(-1)^(n-1)*(1-x^(n^2))/(1-x^n).
G.f.: (1/Product_{n>=1}(1-x^n))*Sum_{n,r>=0} (-1)^(n+r)*x^(n*(3*n+5)/2+2*n*r+r*(r+3)/2). (End)
a(n) ~ exp(Pi*sqrt(2*n/3)) / (16*sqrt(3)*n). - Vaclav Kotesovec, Jul 06 2025
Extensions
New name, example and more terms from Omar E. Pol, Apr 06 2012
More terms a(44)-a(50) from Alois P. Heinz, Apr 08 2012
Comments