A195018 a(n) = n*(10*n-3).
0, 7, 34, 81, 148, 235, 342, 469, 616, 783, 970, 1177, 1404, 1651, 1918, 2205, 2512, 2839, 3186, 3553, 3940, 4347, 4774, 5221, 5688, 6175, 6682, 7209, 7756, 8323, 8910, 9517, 10144, 10791, 11458, 12145, 12852, 13579, 14326, 15093, 15880, 16687, 17514, 18361, 19228
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
Magma
[n*(10*n-3): n in [0..50]]; // Vincenzo Librandi, Oct 28 2011
-
Mathematica
Table[n (10 n-3),{n,0,50}] (* or *) LinearRecurrence[{3,-3,1},{0,7,34},50] (* Harvey P. Dale, May 27 2012 *)
-
PARI
a(n)=n*(10*n-3) \\ Charles R Greathouse IV, Jun 17 2017
Formula
a(n) = A153127(n-1) + 1, if n >= 1.
G.f.: -x*(7+13*x)/(x-1)^3. - R. J. Mathar, Oct 15 2011
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); a(0)=0, a(1)=7, a(2)=34. - Harvey P. Dale, May 27 2012
From Elmo R. Oliveira, Dec 15 2024: (Start)
E.g.f.: exp(x)*x*(7 + 10*x).
a(n) = A000566(2*n). (End)
Comments