A195029 a(n) = n*(14*n + 13) + 3.
3, 30, 85, 168, 279, 418, 585, 780, 1003, 1254, 1533, 1840, 2175, 2538, 2929, 3348, 3795, 4270, 4773, 5304, 5863, 6450, 7065, 7708, 8379, 9078, 9805, 10560, 11343, 12154, 12993, 13860, 14755, 15678, 16629, 17608, 18615, 19650, 20713, 21804, 22923, 24070, 25245
Offset: 0
Links
- Matthew House, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
Mathematica
Table[n (14 n + 13) + 3, {n, 0, 40}] (* Bruno Berselli, Feb 14 2017 *) LinearRecurrence[{3,-3,1},{3,30,85},50] (* Harvey P. Dale, May 03 2018 *)
-
PARI
a(n)=n*(14*n+13)+3 \\ Charles R Greathouse IV, Jun 17 2017
Formula
a(n) = 14*n^2 + 13*n + 3 = A195028(n) + 3 = (2*n + 1)*(7*n + 3).
From Colin Barker, Apr 09 2012: (Start)
G.f.: (3 + 21*x + 4*x^2)/(1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End)
From Elmo R. Oliveira, Dec 29 2024: (Start)
E.g.f.: exp(x)*(3 + 27*x + 14*x^2).
Extensions
Edited by Bruno Berselli, Feb 14 2017
Comments