cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A195037 17 times triangular numbers.

Original entry on oeis.org

0, 17, 51, 102, 170, 255, 357, 476, 612, 765, 935, 1122, 1326, 1547, 1785, 2040, 2312, 2601, 2907, 3230, 3570, 3927, 4301, 4692, 5100, 5525, 5967, 6426, 6902, 7395, 7905, 8432, 8976, 9537, 10115, 10710, 11322, 11951, 12597, 13260, 13940, 14637, 15351, 16082, 16830
Offset: 0

Views

Author

Omar E. Pol, Sep 12 2011

Keywords

Comments

Related to the primitive Pythagorean triple [5, 12, 13].
Sequence found by reading the line from 0, in the direction 0, 17, ..., and the same line from 0, in the direction 0, 51, ..., in the Pythagorean spiral whose edges have length A195031 and whose vertices are the numbers A195032. This is the main diagonal of the square spiral.
Sum of the numbers from 8*n to 9*n. - Wesley Ivan Hurt, Dec 23 2015

Crossrefs

Bisection of A195032.

Programs

Formula

a(n) = (17*n^2 + 17*n)/2 = 17*n*(n+1)/2 = 17*A000217(n).
From Wesley Ivan Hurt, Dec 23 2015: (Start)
G.f.: 17*x/(1-x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2.
a(n) = Sum_{i=8*n..9*n} i. (End)
From Amiram Eldar, Feb 22 2023: (Start)
Sum_{n>=1} 1/a(n) = 2/17.
Sum_{n>=1} (-1)^(n+1)/a(n) = (4*log(2) - 2)/17.
Product_{n>=1} (1 - 1/a(n)) = -(17/(2*Pi))*cos(5*Pi/(2*sqrt(17))).
Product_{n>=1} (1 + 1/a(n)) = (17/(2*Pi))*cos(3*Pi/(2*sqrt(17))). (End)
From Elmo R. Oliveira, Dec 25 2024: (Start)
E.g.f.: 17*exp(x)*x*(2 + x)/2.
a(n) = A195032(2*n). (End)