A195037 17 times triangular numbers.
0, 17, 51, 102, 170, 255, 357, 476, 612, 765, 935, 1122, 1326, 1547, 1785, 2040, 2312, 2601, 2907, 3230, 3570, 3927, 4301, 4692, 5100, 5525, 5967, 6426, 6902, 7395, 7905, 8432, 8976, 9537, 10115, 10710, 11322, 11951, 12597, 13260, 13940, 14637, 15351, 16082, 16830
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Magma
[17*n*(n+1)/2 : n in [0..50]]; // Wesley Ivan Hurt, Dec 23 2015
-
Maple
A195037:=n->17*n*(n+1)/2: seq(A195037(n), n=0..60); # Wesley Ivan Hurt, Dec 23 2015
-
Mathematica
17*Accumulate[Range[0,50]] (* Harvey P. Dale, May 31 2014 *) Table[17*n*(n + 1)/2, {n, 0, 50}] (* Wesley Ivan Hurt, Dec 23 2015 *)
-
PARI
a(n)=17*n*(n+1)/2 \\ Charles R Greathouse IV, Jun 17 2017
Formula
a(n) = (17*n^2 + 17*n)/2 = 17*n*(n+1)/2 = 17*A000217(n).
From Wesley Ivan Hurt, Dec 23 2015: (Start)
G.f.: 17*x/(1-x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2.
a(n) = Sum_{i=8*n..9*n} i. (End)
From Amiram Eldar, Feb 22 2023: (Start)
Sum_{n>=1} 1/a(n) = 2/17.
Sum_{n>=1} (-1)^(n+1)/a(n) = (4*log(2) - 2)/17.
Product_{n>=1} (1 - 1/a(n)) = -(17/(2*Pi))*cos(5*Pi/(2*sqrt(17))).
Product_{n>=1} (1 + 1/a(n)) = (17/(2*Pi))*cos(3*Pi/(2*sqrt(17))). (End)
From Elmo R. Oliveira, Dec 25 2024: (Start)
E.g.f.: 17*exp(x)*x*(2 + x)/2.
a(n) = A195032(2*n). (End)
Comments