A195085 Positive integers n for which there exist exactly two integers k in {1,2,3,...,n-1} such that k*n is square.
9, 18, 27, 45, 54, 63, 90, 99, 117, 126, 135, 153, 171, 189, 198, 207, 234, 261, 270, 279, 297, 306, 315, 333, 342, 351, 369, 378, 387, 414, 423, 459, 477, 495, 513, 522, 531, 549, 558, 585, 594, 603, 621, 630, 639, 657, 666, 693, 702, 711, 738, 747, 765, 774, 783
Offset: 1
Keywords
Examples
Given n=9, {1*9, 2*9, ..., 8*9} = {9,18,27,36,45,54,63,72}, of which 9 and 36 are square. Thus 9 is a term of the sequence.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..1000
Programs
-
Haskell
a195085 n = a195085_list !! (n-1) a195085_list = map (+ 1) $ elemIndices 2 a057918_list -- Reinhard Zumkeller, Mar 27 2012
-
Magma
[k:k in [1..800]|#[m:m in [1..k-1]| IsSquare(m*k)] eq 2]; // Marius A. Burtea, Dec 03 2019
Comments