A195116 a(n) = (2+3^n)*(3+2^n).
12, 25, 77, 319, 1577, 8575, 48977, 286759, 1699817, 10137775, 60645377, 363332599, 2178384857, 13065493375, 78378545777, 470228096839, 2821239178697, 16927047127375, 101561119454177, 609363227843479, 3656168902513337, 21936982025631775
Offset: 0
Links
- Bruno Berselli, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (12,-47,72,-36).
Programs
-
Magma
[(2+3^n)*(3+2^n): n in [0..21]];
-
Mathematica
Table[(2 + 3^n) (3 + 2^n), {n, 0, 30}] (* Vincenzo Librandi, Mar 26 2013 *)
-
PARI
for(n=0, 21, print1((2+3^n)*(3+2^n)", "));
-
Python
def a(n): return (2+3**n)*(3+2**n) print([a(n) for n in range(23)]) # Michael S. Branicky, Dec 25 2021
Formula
G.f.: (12-119*x+341*x^2-294*x^3)/((1-x)*(1-2*x)*(1-3*x)*(1-6*x)).
Sum_{i=0..n} a(i) = (1/10)*(12*6^n+45*3^n+40*2^n+60*n+23).