cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A195143 a(n) = n-th concentric 12-gonal number.

Original entry on oeis.org

0, 1, 12, 25, 48, 73, 108, 145, 192, 241, 300, 361, 432, 505, 588, 673, 768, 865, 972, 1081, 1200, 1321, 1452, 1585, 1728, 1873, 2028, 2185, 2352, 2521, 2700, 2881, 3072, 3265, 3468, 3673, 3888, 4105, 4332, 4561, 4800, 5041, 5292, 5545, 5808, 6073, 6348
Offset: 0

Views

Author

Omar E. Pol, Sep 17 2011

Keywords

Comments

Concentric dodecagonal numbers. [corrected by Ivan Panchenko, Nov 09 2013]
Sequence found by reading the line from 0, in the direction 0, 12,..., and the same line from 1, in the direction 1, 25,..., in the square spiral whose vertices are the generalized octagonal numbers A001082. Main axis, perpendicular to A028896 in the same spiral.
Partial sums of A091998. - Reinhard Zumkeller, Jan 07 2012
Column 12 of A195040. - Omar E. Pol, Sep 28 2011

Crossrefs

A135453 and A069190 interleaved.
Cf. A016921 (6n+1), A016969 (6n+5), A091998 (positive integers of the form 12*k +- 1), A092242 (positive integers of the form 12*k +- 5).

Programs

  • Haskell
    a195143 n = a195143_list !! n
    a195143_list = scanl (+) 0 a091998_list
    -- Reinhard Zumkeller, Jan 07 2012
  • Magma
    [(3*n^2+(-1)^n-1): n in [0..50]]; // Vincenzo Librandi, Sep 27 2011
    
  • Mathematica
    Table[Sum[2*(-1)^(n - k + 1) + 6*k - 3, {k, n}], {n, 0, 47}] (* L. Edson Jeffery, Sep 14 2014 *)

Formula

From Vincenzo Librandi, Sep 27 2011: (Start)
a(n) = 3*n^2+(-1)^n-1.
a(n) = -a(n-1) + 6*n^2 - 6*n + 1. (End)
G.f.: -x*(1+10*x+x^2) / ( (1+x)*(x-1)^3 ). - R. J. Mathar, Sep 18 2011
a(n) = Sum_{k=1..n} (2*(-1)^(n-k+1) + 3*(2*k-1)), n>0, a(0) = 0. - L. Edson Jeffery, Sep 14 2014
Sum_{n>=1} 1/a(n) = Pi^2/72 + tan(Pi/sqrt(6))*Pi/(4*sqrt(6)). - Amiram Eldar, Jan 16 2023