A195149 Concentric 22-gonal numbers.
0, 1, 22, 45, 88, 133, 198, 265, 352, 441, 550, 661, 792, 925, 1078, 1233, 1408, 1585, 1782, 1981, 2200, 2421, 2662, 2905, 3168, 3433, 3718, 4005, 4312, 4621, 4950, 5281, 5632, 5985, 6358, 6733, 7128, 7525, 7942, 8361, 8800, 9241, 9702, 10165, 10648, 11133
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (2,0,-2,1).
Crossrefs
Programs
-
Magma
[(22*n^2+9*(-1)^n-9)/4: n in [0..50]]; // Vincenzo Librandi, Sep 27 2011
-
Maple
A195149:=n->(22*n^2+9*(-1)^n-9)/4: seq(A195149(n), n=0..50); # Wesley Ivan Hurt, Jul 07 2014
-
Mathematica
Table[(22*n^2 + 9*(-1)^n - 9)/4, {n, 0, 50}] (* Wesley Ivan Hurt, Jul 07 2014 *)
-
PARI
a(n)=(22*n^2+9*(-1)^n-9)/4 \\ Charles R Greathouse IV, Sep 24 2015
Formula
G.f.: -x*(1+20*x+x^2) / ( (1+x)*(x-1)^3 ). - R. J. Mathar, Sep 18 2011
a(n) = (22*n^2+9*(-1)^n-9)/4; a(n) = -a(n-1)+11*n^2-11*n+1. - Vincenzo Librandi, Sep 27 2011
Sum_{n>=1} 1/a(n) = Pi^2/132 + tan(3*Pi/(2*sqrt(11)))*Pi/(6*sqrt(11)). - Amiram Eldar, Jan 17 2023
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4). - Wesley Ivan Hurt, Jun 19 2025
Comments