cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A195151 Square array read by antidiagonals upwards: T(n,k) = n*((k-2)*(-1)^n+k+2)/4, n >= 0, k >= 0.

Original entry on oeis.org

0, 1, 0, 0, 1, 0, 3, 1, 1, 0, 0, 3, 2, 1, 0, 5, 2, 3, 3, 1, 0, 0, 5, 4, 3, 4, 1, 0, 7, 3, 5, 6, 3, 5, 1, 0, 0, 7, 6, 5, 8, 3, 6, 1, 0, 9, 4, 7, 9, 5, 10, 3, 7, 1, 0, 0, 9, 8, 7, 12, 5, 12, 3, 8, 1, 0, 11, 5, 9, 12, 7, 15, 5, 14, 3, 9, 1, 0, 0, 11, 10, 9, 16, 7
Offset: 0

Views

Author

Omar E. Pol, Sep 14 2011

Keywords

Comments

Also square array T(n,k) read by antidiagonals in which column k lists the multiples of k and the odd numbers interleaved, n>=0, k>=0. Also square array T(n,k) read by antidiagonals in which if n is even then row n lists the multiples of (n/2), otherwise if n is odd then row n lists a constant sequence: the all n's sequence. Partial sums of the numbers of column k give the column k of A195152. Note that if k >= 1 then partial sums of the numbers of the column k give the generalized m-gonal numbers, where m = k + 4.
All columns are multiplicative. - Andrew Howroyd, Jul 23 2018

Examples

			Array begins:
.  0,   0,   0,   0,   0,   0,   0,   0,   0,   0,...
.  1,   1,   1,   1,   1,   1,   1,   1,   1,   1,...
.  0,   1,   2,   3,   4,   5,   6,   7,   8,   9,...
.  3,   3,   3,   3,   3,   3,   3,   3,   3,   3,...
.  0,   2,   4,   6,   8,  10,  12,  14,  16,  18,...
.  5,   5,   5,   5,   5,   5,   5,   5,   5,   5,...
.  0,   3,   6,   9,  12,  15,  18,  21,  24,  27,...
.  7,   7,   7,   7,   7,   7,   7,   7,   7,   7,...
.  0,   4,   8,  12,  16,  20,  24,  28,  32,  36,...
.  9,   9,   9,   9,   9,   9,   9,   9,   9,   9,...
.  0,   5,  10,  15,  20,  25,  30,  35,  40,  45,...
...
		

Crossrefs

Columns k: A026741 (k=1), A001477 (k=2), zero together with A080512 (k=3), A022998 (k=4), A195140 (k=5), zero together with A165998 (k=6), A195159 (k=7), A195161 (k=8), A195312 k=(9), A195817 (k=10), A317311 (k=11), A317312 (k=12), A317313 (k=13), A317314 k=(14), A317315 (k=15), A317316 (k=16), A317317 (k=17), A317318 (k=18), A317319 k=(19), A317320 (k=20), A317321 (k=21), A317322 (k=22), A317323 (k=23), A317324 k=(24), A317325 (k=25), A317326 (k=26).

Programs