A195189 Denominators of a sequence leading to gamma = A001620.
2, 24, 72, 2880, 800, 362880, 169344, 29030400, 9331200, 4790016000, 8673280, 31384184832000, 6181733376000, 439378587648000, 10346434560000, 512189896458240000, 265423814656, 14148260909088768000, 2076423318208512000, 96342919523794944000000, 74538995631567667200000
Offset: 0
Examples
a(0)=1*2, a(1)=2*12, a(2)=3*24, a(3)=4*720.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..440
- Iaroslav V. Blagouchine, A theorem for the closed-form evaluation of the first generalized Stieltjes constant at rational arguments and some related summations, Journal of Number Theory (Elsevier), vol. 148, pp. 537-592 and vol. 151, pp. 276-277, 2015. arXiv version.
- Iaroslav V. Blagouchine, Expansions of generalized Euler's constants into the series of polynomials in 1/pi^2 and into the formal enveloping series with rational coefficients only, Journal of Number Theory (Elsevier), vol. 158, pp. 365-396, 2016. arXiv version.
- M. Coffey and J. Sondow, Rebuttal of Kowalenko's paper as concerns the irrationality of Euler's constant, Acta Appl. Math., 121 (2012), 1-3.
- J. C. Kluyver, Euler's constant and natural numbers, Proc. Kon. Ned. Akad. Wet., 27(1-2) (1924), 142-144.
Programs
-
Mathematica
g[n_]:=Sum[StirlingS1[n,l]/(l+1),{l,1,n}]/(n*n!); a[n_]:=Denominator[g[n]]; Table[a[n],{n,1,30}] (* Iaroslav V. Blagouchine, May 03 2015 *) g[n_] := Sum[ BernoulliB[j]/j * StirlingS1[n, j-1], {j, 1, n+1}] / n! ; a[n_] := (n+1)*Denominator[g[n]]; Table[a[n], {n, 0, 20}] (* or *) max = 20; Denominator[ CoefficientList[ Series[ 1/Log[1 + x] - 1/x, {x, 0, max}], x]]*Range[max+1] (* Jean-François Alcover, Sep 04 2013 *)
Formula
a(n) = (n+1) * A002207(n).
Extensions
More terms from Jean-François Alcover, Sep 04 2013
Comments