cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A145377 a(n) = A002324(n) mod 2.

Original entry on oeis.org

1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

N. J. A. Sloane, Mar 12 2009

Keywords

Crossrefs

Essentially same as A195198.

Programs

Formula

a(n) = A195198(n) for n >= 1.
a(n) = Sum_{ m: m^2|n } A154272(n/m^2). - Andrey Zabolotskiy, May 07 2018

Extensions

More terms from Antti Karttunen, Nov 05 2017

A214284 Characteristic function of squares or five times squares.

Original entry on oeis.org

1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Michael Somos, Jul 09 2012

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
A195198 is a similar sequence except with three instead of five. - Michael Somos, Oct 22 2017

Examples

			G.f. = 1 + x + x^4 + x^5 + x^9 + x^16 + x^20 + x^25 + x^36 + x^45 + x^49 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ Series[ (EllipticTheta[ 3, 0, q] + EllipticTheta[ 3, 0, q^5]) / 2, {q, 0, n}], {q, 0, n}];
    a[ n_] := If[ n < 0, 0, Boole[ OddQ [ Length @ Divisors @ n] || OddQ [ Length @ Divisors[5 n]]]];
  • PARI
    {a(n) = issquare(n) || issquare(5*n)};
    
  • PARI
    {a(n) = if( n<1, n==0, direuler( p=2, n, if( p==5, 1 + X, 1) / (1 - X^2))[n])};

Formula

Expansion of f(q, q^9) * f(-q^8, -q^12) / f(-q^4, -q^16) in powers of q where f(, ) is Ramanujan's general theta function.
Expansion of f(q^3, q^7) * f(-q^2, -q^3) / f(-q, -q^4) in powers of q where f(, ) is Ramanujan's general theta function.
Euler transform of period 20 sequence [1, -1, 0, 1, 0, 0, 0, -1, 1, -1, 1, -1, 0, 0, 0, 1, 0, -1, 1, -1, ...].
a(n) is multiplicative with a(0) = a(5^e) = 1, a(p^e) = 1 if e is even, 0 otherwise.
G.f.: (theta_3(q) + theta_3(q^5)) / 2 = 1 + (Sum_{k>0} x^(k^2) + x^(5*k^2)).
Dirichlet g.f.: zeta(2*s) * (1 + 5^-s).
a(4*n + 2) = a(4*n + 3) = 0. a(4*n + 1) = A127693(n). a(5*n) = a(n).
Sum_{k=0..n} a(k) ~ c * sqrt(n), where c = 1+1/sqrt(5) = 1.447213... (A344212). - Amiram Eldar, Sep 14 2023

A127692 Expansion of psi(x^4) + x * psi(x^12) in powers of x where psi() is a Ramanujan theta function.

Original entry on oeis.org

1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Michael Somos, Jan 19 2007

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
a(n) = 1 if n is four times a triangular number or one more than twelve times a triangular number else 0. - Michael Somos, Jul 19 2012

Examples

			G.f. = 1 + x + x^4 + x^12 + x^13 + x^24 + x^37 + x^40 + x^60 + x^73 + x^84 + ...
G.f. = q + q^3 + q^9 + q^25 + q^27 + q^49 + q^75 + q^81 + q^121 + q^147 + q^169 + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = issquare(2*n + 1) + issquare(6*n + 3)};
    
  • PARI
    {a(n) = n = 2*n + 1; issquare(n) || issquare(3*n)};

Formula

Euler transform of period 24 sequence [ 1, -1, 0, 1, -1, 1, -1, 0, 0, 0, 1, -1, 1, 0, 0, 0, -1, 1, -1, 1, 0, -1, 1, -1, ...].
a(n) = b(2*n + 1) where b(n) is multiplicative and b(2^e) = 0^e, b(3^e) = 1, else b(p^e) = (1 + (-1)^e)/2.
a(3*n + 1) = a(n), a(3*n + 2) = a(4*n + 2) = a(4*n + 3) = a(6*n + 3) = 0.
a(2*n) = A005369(n). a(4*n) = A010054(n). a(6*n) = A089806(n). a(12*n) = A080995(n).
G.f.: Sum_{k>0} x^(2k(k-1)) +x^(6k(k-1)+1) = Product_{k>0} (1-x^(24k)) (1-x^(24k-5)) (1-x^(24k-7)) (1-x^(24k-17)) (1-x^(24k-19)) (1+x^(12k-1)) (1+x^(12k-4)) (1+x^(12k-6)) (1+x^(12k-8)) (1+x^(12k-11)).
From Michael Somos, Jul 19 2012: (Start)
Expansion of f(x, -x^5) * f(-x^4, -x^8) / f(x, -x) in powers of x where f(,) is the Ramanujan two-variable theta function.
G.f.: (Sum_{k in Z} x^(2*k*(k + 1)) + x^(6*k*(k + 1) + 1)) / 2.
a(n) = A195198(2*n + 1). (End)
Sum_{k=1..n} a(k) ~ c * sqrt(n), where c = 1/sqrt(2) + 1/sqrt(6) = 1.115355... (A145439). - Amiram Eldar, Dec 29 2023
Showing 1-3 of 3 results.