A195204 Triangle of coefficients of a sequence of binomial type polynomials.
2, 2, 4, 6, 12, 8, 26, 60, 48, 16, 150, 380, 360, 160, 32, 1082, 2940, 3120, 1680, 480, 64, 9366, 26908, 31080, 19040, 6720, 1344, 128, 94586, 284508, 351344, 236880, 96320, 24192, 3584, 256
Offset: 1
Examples
Triangle begins n\k|....1......2......3......4......5......6......7 =================================================== ..1|....2 ..2|....2......4 ..3|....6.....12......8 ..4|...26.....60.....48.....16 ..5|..150....380....360....160.....32 ..6|.1082...2940...3120...1680....480.....64 ..7|.9366..26908..31080..19040...6720...1344....128 ... Relation with rising factorials for row 4: x^[4] = 16*x^4+48*x^3+60*x^2+26*x = 2^4*x*(x+1)*(x+2)*(x+3)-6*2^3*x*(x+1)*(x+2)+7*2^2*x*(x+1)-2*x, where [1,7,6,1] is the fourth row of the triangle of Stirling numbers of the second kind A008277. Generalized Dobinski formula for row 4: exp(-x)*Sum_{k >= 1} (-k)^[4]*x^k/k! = exp(-x)*Sum_{k >= 1} (16*k^4-48*k^3+60*k^2-26*k)*x^k/k! = 16*x^4+48*x^3+28*x^2+2*x = Bell(4,2*x). Example of generalized Bernoulli summation formula: 2*(1^[2]+2^[2]+...+n^[2]) = 1/3*(B_0*n^[3]-3*B_1*n^[2]+3*B_2*n^[1]) = n*(n+1)*(4*n+5)/3, where B_0 = 1, B_1 = -1/2, B_2 = 1/6 are Bernoulli numbers. From _Philippe Deléham_, Dec 22 2011: (Start) Triangle (0, 1, 2, 2, 4, 3, 6, ...) DELTA (2, 0, 2, 0, 2, ...) begins: 1; 0, 2; 0, 2, 4; 0, 6, 12, 8; 0, 26, 60, 48, 16; 0, 150, 380, 360, 160, 32; 0, 1082, 2940, 3120, 1680, 480, 64; 0, 9366, 26908, 31080, 19040, 6720, 1344, 128; ... (End)
Crossrefs
Programs
-
Maple
# The function BellMatrix is defined in A264428. # Adds (1,0,0,0, ..) as column 0. BellMatrix(n -> (-1)^(n+1)*polylog(-n, 2), 10); # Peter Luschny, Jan 29 2016
-
Mathematica
BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]]; rows = 12; M = BellMatrix[(-1)^(#+1) PolyLog[-#, 2]&, rows]; Table[M[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 24 2018, after Peter Luschny *)
Formula
E.g.f.: F(x,z) := (exp(z)/(2-exp(z)))^x = Sum_{n>=0} P_n(x)*z^n/n!
= 1 + 2*x*z + (2*x+4*x^2)*z^2/2! + (6*x+12*x^2+8*x^3)*z^3/3! + ....
The generating function F(x,z) satisfies the partial differential equation d/dz(F(x,z)) = x*F(x,z) + x*F(x+1,z) and hence the row polynomials P_n(x) satisfy the recurrence relation
P_(n+1)(x)= x*(P_n(x) + P_n(x+1)), with P_0(x) = 1.
In what follows we change notation and write x^[n] for P_n(x).
Relation with the factorial polynomials:
For n >= 1,
x^[n] = Sum_{k = 1..n} (-1)^(n-k)*Stirling2(n,k)*2^k*x^(k),
and its inverse formula
2^n*x^(n) = Sum_{k = 1..n} |Stirling1(n,k)|*x^[k],
where x^(n) denotes the rising factorial x*(x+1)*...*(x+n-1).
Relation with the Bell polynomials:
The alternating n-th row entries (-1)^(n+k)*T(n,k) are the connection coefficients expressing the polynomial Bell(n,2*x) as a linear combination of Bell(k,x), 1 <= k <= n.
The delta operator:
The sequence of row polynomials is of binomial type. If D denotes the derivative operator d/dx then the delta operator D* for this sequence of binomial type polynomials is given by
D* = D/2 - log(cosh(D/2)) = log(2*exp(D)/(exp(D)+1))
= (D/2) - (D/2)^2/2! + 2*(D/2)^4/4! - 16*(D/2)^6/6! + 272*(D/2)^8/8! - ...,
where [1,2,16,272,...] is the sequence of tangent numbers A000182.
D* is the lowering operator for the row polynomials
(D*)x^[n] = n*x^[n-1].
Associated Bernoulli polynomials:
Generalized Bernoulli polynomial GB(n,x) associated with the polynomials x^[n] may be defined by
GB(n,x) := ((D*)/(exp(D)-1))x^[n].
They satisfy the difference equation
GB(n,x+1) - GB(n,x) = n*x^[n-1]
and have the expansion
GB(n,x) = -(1/2)*n*x^[n-1] + (1/2)*Sum_{k = 0..n} binomial(n,k) * B_k * x^[n-k], where B_k denotes the ordinary Bernoulli numbers.
The first few polynomials are
GB(0,x) = 1/2, GB(1,x) = x-3/4, GB(2,x) = 2*x^2-2*x+1/12,
GB(3,x) = 4*x^3-3*x^2-x, GB(4,x) = 8*x^4-4*x^2-4*x-1/60.
It can be shown that
1/(n+1)*(d/dx)(GB(n+1,x)) = Sum_{i = 0..n} 1/(i+1) * Sum_{k = 0..i} (-1)^k *binomial(i,k)*(x+k)^[n].
This generalizes a well-known formula for Bernoulli polynomials.
Relations with other sequences:
Row sums: A000629(n) = 2*A000670(n). Column 1: 2*A000670(n-1). Row polynomials evaluated at x = 1/2: {P_n(1/2)}n>=0 = [1,1,2,7,35,226,...] = A014307.
T(n,k) = A184962(n,k)*2^k. - Philippe Deléham, Feb 17 2013
Also the Bell transform of A076726. For the definition of the Bell transform see A264428. - Peter Luschny, Jan 29 2016
Conjecture: o.g.f. as a continued fraction of Stieltjes type: 1/(1 - 2*x*z/(1 - z/(1 - 2*(x + 1)*z/(1 - 2*z/(1 - 2*(x + 2)*z/(1 - 3*z/(1 - 2*(x + 3)*z/(1 - 4*z/(1 - ... ))))))))). - Peter Bala, Dec 12 2024
Extensions
a(1) added by Philippe Deléham, Dec 22 2011
Comments