A195238 Numbers with at least 2 and not more than 3 distinct prime factors not greater than 7 that are multiples of 7 or of 15.
14, 15, 21, 28, 30, 35, 42, 45, 56, 60, 63, 70, 75, 84, 90, 98, 105, 112, 120, 126, 135, 140, 147, 150, 168, 175, 180, 189, 196, 224, 225, 240, 245, 252, 270, 280, 294, 300, 315, 336, 350, 360, 375, 378, 392, 405, 441, 448, 450, 480, 490, 504, 525, 540, 560
Offset: 1
Examples
a(10) = 60 = 2^2 * 3 * 5. a(11) = 63 = 3^2 * 7. a(12) = 70 = 2 * 5 * 7.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..1000
Programs
-
Haskell
a195238 n = a195238_list !! (n-1) a195238_list = filter (\x -> a001221 x `elem` [2,3] && a006530 x `elem` [5,7] && (mod x 7 == 0 || mod x 15 == 0)) [1..] -- Reinhard Zumkeller, Sep 13 2011
-
Mathematica
pfsQ[n_]:=Module[{fs=Transpose[FactorInteger[n]][[1]]},Max[fs]<8 && 1
Harvey P. Dale, Aug 21 2011 *) -
PARI
is(n)=my(v=apply(p->valuation(n,p), [2,3,5,7])); n==2^v[1]*3^v[2]*5^v[3]*7^v[4] && (v[4] || v[2]*v[3]) && factorback(v)==0 && !!v[1]+!!v[2]+!!v[3]+!!v[4]>1 \\ Charles R Greathouse IV, Sep 14 2015
Formula
2 <= A001221(a(n)) <= 3.
5 <= A006530(a(n)) <= 7.
Sum_{n>=1} 1/a(n) = 11/16. - Amiram Eldar, Oct 25 2024
Comments