A195265 Trajectory of 20 under iteration of the map x -> A080670(x).
20, 225, 3252, 223271, 297699, 399233, 715623, 3263907, 32347303, 160720129, 1153139393, 72171972859, 736728093411, 3245576031137, 11295052366467, 310807934835791, 1789205424940407, 31745337977379983, 1122916740775279751, 7251536377635958081, 151243563319717018007
Offset: 1
Examples
20 = 2^2*5 -> 225 = 3^2*5^2 -> 3252 = 2^2*3*271 -> 223271 ...
Links
- Hans Havermann, Table of n, a(n) for n = 1..110
- Hans Havermann, Table of n, A195264(n) for n = 1..10000 (includes links to lengthy (>40) and unknown-outcome evolutions, and a list of unfactored composites in the unknowns' last step)
- N. J. A. Sloane, Three (No, 8) Lovely Problems from the OEIS, Experimental Mathematics Seminar, Rutgers University, Oct 05 2017, Part I, Part 2, Slides. (Mentions this sequence)
Programs
-
Maple
# See A195266
-
Mathematica
A080670[n_] := ToExpression@StringJoin[ToString/@Flatten[DeleteCases[FactorInteger[n], 1, -1]]]; NestWhileList[A080670, i = 1; 20, (PrintTemporary[{i++, #}]; ! PrimeQ[#]) &, 1, 40] (* Wouter Meeussen, Oct 27 2013 *)
Extensions
Alonso del Arte computed 40 terms, D. S. McNeil extended it to 66 terms, Sean A. Irvine to 70 terms, Hans Havermann (Oct 27 2013) to 110 terms.
Comments