A195284 Decimal expansion of shortest length of segment from side AB through incenter to side AC in right triangle ABC with sidelengths (a,b,c)=(3,4,5); i.e., decimal expansion of 2*sqrt(10)/3.
2, 1, 0, 8, 1, 8, 5, 1, 0, 6, 7, 7, 8, 9, 1, 9, 5, 5, 4, 6, 6, 5, 9, 2, 9, 0, 2, 9, 6, 2, 1, 8, 1, 2, 3, 5, 5, 8, 1, 3, 0, 3, 6, 7, 5, 9, 5, 5, 0, 1, 4, 4, 5, 5, 1, 2, 3, 8, 3, 3, 6, 5, 6, 8, 5, 2, 8, 3, 9, 6, 2, 9, 2, 4, 2, 6, 1, 5, 8, 8, 1, 4, 2, 2, 9, 4, 9, 8, 7, 3, 8, 9, 1, 9, 5, 3, 3, 5, 3, 0
Offset: 1
A195298 Decimal expansion of shortest length, (A), of segment from side AB through incenter to side AC in right triangle ABC with sidelengths (a,b,c)=(28,45,53).
2, 0, 8, 0, 0, 3, 1, 3, 9, 6, 9, 3, 7, 2, 9, 0, 9, 3, 4, 5, 9, 9, 2, 2, 9, 2, 8, 3, 2, 9, 3, 4, 3, 7, 9, 4, 1, 0, 7, 9, 3, 3, 4, 1, 9, 5, 0, 2, 1, 8, 5, 0, 6, 9, 6, 6, 7, 9, 4, 8, 0, 5, 1, 1, 7, 9, 5, 4, 6, 1, 6, 3, 9, 6, 0, 7, 1, 1, 5, 7, 6, 6, 6, 6, 5, 5, 9, 4, 1, 1, 6, 8, 8, 0, 2, 6, 4, 7, 8
Offset: 2
Comments
See A195284 for definitions and a general discussion.
Examples
(A)=20.800313969372909345992292832934379410...
Programs
-
Mathematica
a = 28; b = 45; c = 53; h = a (a + c)/(a + b + c); k = a*b/(a + b + c); f[t_] := (t - a)^2 + ((t - a)^2) ((a*k - b*t)/(a*h - a*t))^2; s = NSolve[D[f[t], t] == 0, t, 150] f1 = (f[t])^(1/2) /. Part[s, 4] RealDigits[%, 10, 100] (* (A) A195298 *) f[t_] := (b*t/a)^2 + ((b*t/a)^2) ((a*h - a*t)/(b*t - a*k))^2 s = NSolve[D[f[t], t] == 0, t, 150] f3 = (f[t])^(1/2) /. Part[s, 1] RealDigits[%, 10, 100] (* (B) A195299 *) f[t_] := (t - a)^2 + ((t - a)^2) (k/(h - t))^2 s = NSolve[D[f[t], t] == 0, t, 150] f2 = (f[t])^(1/2) /. Part[s, 4] RealDigits[%, 10, 100] (* (C)=20*sqrt(2) *) (f1 + f2 + f3)/(a + b + c) RealDigits[%, 10, 100] (* Phil(ABC,I), A195300 *)
A195303 Decimal expansion of normalized Philo sum, Philo(ABC,I), where I=incenter of a 1,1,sqrt(2) right triangle ABC.
6, 1, 4, 0, 5, 8, 9, 7, 1, 0, 3, 2, 2, 1, 2, 6, 1, 1, 5, 4, 6, 3, 8, 4, 8, 9, 2, 5, 3, 9, 3, 8, 5, 4, 0, 8, 2, 6, 0, 3, 6, 7, 3, 8, 6, 8, 9, 6, 9, 9, 6, 8, 9, 2, 7, 6, 4, 7, 9, 4, 1, 9, 1, 7, 6, 7, 3, 2, 8, 5, 7, 4, 5, 1, 7, 0, 3, 8, 0, 3, 8, 4, 9, 2, 8, 5, 5, 8, 3, 1, 6, 0, 3, 1, 2, 0, 5, 5, 1, 2
Offset: 0
Comments
See A195284 for definitions and a general discussion. This constant is the maximum of Philo(ABC,I) over all triangles ABC.
Examples
Philo(ABC,I)=0.614058971032212611546384892539385408260...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..10000
Crossrefs
Cf. A195284.
Programs
-
Mathematica
a = 1; b = 1; c = Sqrt[2]; h = a (a + c)/(a + b + c); k = a*b/(a + b + c); f[t_] := (t - a)^2 + ((t - a)^2) ((a*k - b*t)/(a*h - a*t))^2; s = NSolve[D[f[t], t] == 0, t, 150] f1 = (f[t])^(1/2) /. Part[s, 1] RealDigits[%, 10, 100] (* (A) A195301 *) f[t_] := (b*t/a)^2 + ((b*t/a)^2) ((a*h - a*t)/(b*t - a*k))^2 s = NSolve[D[f[t], t] == 0, t, 150] f3 = (f[t])^(1/2) /. Part[s, 4] RealDigits[%, 10, 100] (* (B)=(A) *) f[t_] := (t - a)^2 + ((t - a)^2) (k/(h - t))^2 s = NSolve[D[f[t], t] == 0, t, 150] f2 = (f[t])^(1/2) /. Part[s, 1] RealDigits[%, 10, 100] (* (C) A163960 *) (f1 + f2 + f3)/(a + b + c) RealDigits[%, 10, 100] (* Philo(ABC,I), A195303 *)
-
PARI
(3*sqrt(2)-4)*(1+2*sqrt(2-sqrt(2))) \\ Michel Marcus, Jul 27 2018
Formula
Equals (3*sqrt(2)-4)*(1+2*sqrt(2-sqrt(2))).
Comments
Examples
References
Links
Crossrefs
Programs
Maple
Mathematica
PARI
Formula
Extensions