A195309 Row sums of an irregular triangle read by rows in which row n lists the next A026741(n+1) natural numbers A000027.
1, 9, 11, 45, 39, 126, 94, 270, 185, 495, 321, 819, 511, 1260, 764, 1836, 1089, 2565, 1495, 3465, 1991, 4554, 2586, 5850, 3289, 7371, 4109, 9135, 5055, 11160, 6136, 13464, 7361, 16065, 8739, 18981, 10279, 22230, 11990, 25830, 13881
Offset: 1
Keywords
Examples
a(1) = 1 a(2) = 2+3+4 = 9 a(3) = 5+6 = 11 a(4) = 7+8+9+10+11 = 45 a(5) = 12+13+14 = 39 a(6) = 15+16+17+18+19+20+21 = 126 a(7) = 22+23+24+25 = 94 a(8) = 26+27+28+29+30+31+32+33+34 = 270 a(9) = 35+36+37+38+39 = 185
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (0,4,0,-6,0,4,0,-1).
Programs
-
Maple
A195309 := proc(n) (n+1)*(9*n^2+18*n-1+(3*n^2+6*n+1)*(-1)^n)/32 end proc: seq(A195309(n),n=1..60) ; # R. J. Mathar, Oct 08 2011
-
Mathematica
LinearRecurrence[{0,4,0,-6,0,4,0,-1},{1,9,11,45,39,126,94,270},80] (* Harvey P. Dale, Jun 22 2015 *)
Formula
a(n) = (n+1)*(9*n^2+18*n-1+(3*n^2+6*n+1)*(-1)^n)/32 . - R. J. Mathar, Oct 08 2011
G.f. x*(1+9*x+7*x^2+9*x^3+x^4) / ( (x-1)^4*(1+x)^4 ). - R. J. Mathar, Oct 08 2011
Comments