cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A195309 Row sums of an irregular triangle read by rows in which row n lists the next A026741(n+1) natural numbers A000027.

Original entry on oeis.org

1, 9, 11, 45, 39, 126, 94, 270, 185, 495, 321, 819, 511, 1260, 764, 1836, 1089, 2565, 1495, 3465, 1991, 4554, 2586, 5850, 3289, 7371, 4109, 9135, 5055, 11160, 6136, 13464, 7361, 16065, 8739, 18981, 10279, 22230, 11990, 25830, 13881
Offset: 1

Views

Author

Omar E. Pol, Sep 21 2011

Keywords

Comments

The integers in same rows of the source triangle have a property related to Euler's Pentagonal Theorem.
Note that the column 1 of the mentioned triangle gives the positive terms of A001318 (see example).

Examples

			a(1) = 1
a(2) = 2+3+4 = 9
a(3) = 5+6 = 11
a(4) = 7+8+9+10+11 = 45
a(5) = 12+13+14 = 39
a(6) = 15+16+17+18+19+20+21 = 126
a(7) = 22+23+24+25 = 94
a(8) = 26+27+28+29+30+31+32+33+34 = 270
a(9) = 35+36+37+38+39 = 185
		

Crossrefs

Cf. A026741, A195310, A195311, A004188 (bisection).

Programs

  • Maple
    A195309 := proc(n)
            (n+1)*(9*n^2+18*n-1+(3*n^2+6*n+1)*(-1)^n)/32
    end proc:
    seq(A195309(n),n=1..60) ; # R. J. Mathar, Oct 08 2011
  • Mathematica
    LinearRecurrence[{0,4,0,-6,0,4,0,-1},{1,9,11,45,39,126,94,270},80] (* Harvey P. Dale, Jun 22 2015 *)

Formula

a(n) = (n+1)*(9*n^2+18*n-1+(3*n^2+6*n+1)*(-1)^n)/32 . - R. J. Mathar, Oct 08 2011
G.f. x*(1+9*x+7*x^2+9*x^3+x^4) / ( (x-1)^4*(1+x)^4 ). - R. J. Mathar, Oct 08 2011